

MONGOOSE: MONitoring Global Online Opinions via Semantic Extraction

Varun Bhagwan, Tyrone Grandison, Alfredo Alba, Daniel Gruhl, Jan Pieper

IBM Almaden Research Center

650 Harry Road

San Jose, California 95120 USA

{vbhagwan, tyroneg, aalba, dgruhl, jhpieper}@us.ibm.com

Abstract
The ever increasing amount of content on the Internet has

fostered many efforts seeking to leverage this potentially

yottascale information source. Service systems using

advanced data and text analytics techniques have been

developed to perform knowledge gathering and information

discovery over Web data. Information gathered from free

and public sources on the Web is frequently integrated with

enterprise and proprietary data to create sophisticated

service systems able to provide insight in an increasing

number of business critical areas. Unfortunately, for fixed

and or limited resource projects, consistent and reliable

ingestion and integration of content often dominates the

effort, reducing the time available for developing core

analytics and presentations that differentiate and define an

information service. If this initial data extraction,

translation and loading of information (known as ETL in

the database world) can be abstracted for these web

sources, it would provide an important core technology on

which Web-based information services could be more

rapidly and inexpensively developed and deployed. This

paper presents such a system – MONGOOSE – an

approach that seeks to reduce the time spent creating a

reliable data ingest and integration system and thus

reducing the time-to-impact of advanced analytics service

solutions.

1. Introduction

Service systems that perform data analytics are in high

demand today; as people try to leverage existing

information resources, whether in their organizations or

freely and publicly available. The US Federal government

spending alone on data analytics systems now totals in the

hundreds of millions and does not appear to be shrinking

[16].

Analytics efforts seek to extract interesting and often

hidden "nuggets" from within their data by both looking

more deeply at each source document, as well as looking

across all data. In order to do so, however, all of these

systems have to spend a vast amount of time, effort and

resources simply acquiring, translating and integrating

content. Thus, the focus of these efforts tends to shift away

from data analysis – their stated core value proposition –

and towards data ingestion, preparation and integration. In

this paper, we present an information-seeking support

system – MONGOOSE (MONitoring Global Online

Opinions via Semantic Extraction) – that helps to address

this imbalance. It should be noted that although

MONGOOSE was created to fulfill the needs observed in

our experience with web-scale analytics service systems

such as WebFountain [8], SoundIndex [10] etc., it has also

been successfully applied to diverse non-web content

domains such as multi-modal mining for healthcare support

systems [13], corporate communications analytics, and

social network analysis. In addition to showcasing the broad

applicability of an unstructured ETL tool such as

MONGOOSE, these deployments demonstrate the plug-

and-play aspect that allows system creators to rapidly adopt

and adapt specific components of MONGOOSE to deliver

complete systems to customers in previously unprecedented

timeframes.

This paper is organized as follows. Section 2 presents an

overview of the MONGOOSE system. Details of the system

are presented in Section 3, with sub-sections 3.1 and 3.2

discussing its two core components. Section 4 highlights the

key contributions of MONGOOSE, while Section 5 points

to related work in this area. Deployments of MONGOOSE

are mentioned in Section 6, and the conclusion of the paper

and planned future work are presented in Section 7.

2. System Overview

At the most basic level, MONGOOSE is a software

library with supporting code for control flow monitoring,

analysis and correction that enables Worst-Case Scenario

Workflow Management1. It allows community-based

information extraction around specific phenomena that can

be fed into statistical analysis tools.

1 Worst-Case Scenario Workflow Management systems

have Murphy’s Law (“anything that can go wrong will go

wrong”) as their core principle and aim to mitigate these

non-positive episodes.

MONGOOSE Intake Platform
(MIP)

MONGOOSE Control
Platform (MCP)

Data
(Semi-structured,
unstructured and

structured in a
badly formed

syntax)

Data (structured
and meaningful,
with evidence)

Indicators
Feedback

Fig. 1: Overview of the MONGOOSE System

The base MONGOOSE software package consists of the

Intake Platform and the Control Platform (Figure 1). The

user of this system can leverage a series of MONGOOSE

modules to determine the particular information flow for the

application they are developing. The user also tells the

MONGOOSE system the form and content of the data they

wish to have output. In leveraging the MONGOOSE

modules, the user gets a resilient, fault-aware platform that

ingests data irrespective of what happens either with the

data sources or with the processing chain. This also allows

MONGOOSE instances to be created for a multitude of

domains; as instantiation involves plugging in domain

knowledge cartridges into the system and then setting the

outputs to a form suitable for the domain, e.g. OLAP or BI

consumption. At the highest level, MONGOOSE functions

as a robust get statement that recovers from failures.

Activity is monitored by the MONGOOSE Control

Platform, which analyses the system and source state; taking

corrective action as necessary.

The MONGOOSE Intake Platform (Figure 2), hereafter

referred to as the MIP, is comprised of software modules

that falls into one of five categories: Acquisition, Pre-

Processing, Language, Application Descriptors and

Adjudication. As a large proportion of valuable online data

is in “Broken English”
 2

, the system includes new

techniques for spotting and making sense of “Broken

English” use.

2 Current analytics systems assume structured English and

that Natural Language Processing (NLP) can be used. This

is not true online.

The MONGOOSE base package contains acquisition

templates for the automotive and music industries, pre-

processing modules for comments and counts, the IBM

Tunable Ranked List Producer algorithm for adjudication

[2] and a Nagios-based [9] implementation of the

MONGOOSE Control Platform, which performs workflow

analysis and general system monitoring.

3. Architecture

3.1. The Mongoose Intake Platform (MIP)

The MONGOOSE Intake Acquisition Modules

(MIAMs) are base constructs used to build specialized

ingestors for the domain of interest. The MONGOOSE

Intake Pre-Processing Modules (MIPMs) extract individual

comments, posts, discussion points, profiles and counts

from the ingested data and processes the unstructured

content to determine spam and identify on-topic and off-

topic information. The MONGOOSE Intake Language

Modules (MILMs) allows the jargon of the domain of

interest to be included. Dictionaries for terminology in

various domains such as healthcare, media and

entertainment, law, automobiles, politics, etc. are included

in these modules. The MONGOOSE Intake Application

Descriptors Modules (MIADMs) allows the definition of

the key descriptors for the domain and problem of interest.

For example, in politics underlying concepts would be

Integrity, Record, and possibly Funds. The MONGOOSE

Intake Adjudication Modules (MAMs) combine multi-

 Acquisition Pre-Processing Language Application Adjudication

Amazon

B+N

MySpace

…….

reviews

posts

discus

spam

porn

on/off-topic

…….

legal

speak

music

slang

car pref

economy

politics

music

voting

………..

.

data (with

supporting

evidence)

Monitored indicators extracted by

the Control Platform
Feedback and alerts sent

by the Control Platform

Fig. 2: Mongoose Intake Platform component Architecture

modal information in a way that is meaningful for the

business task at hand.

3.1.1. Acquisition. The basic acquisition of the various

artifacts is usually conceptually simple but practically quite

difficult. This is often simply issuing an HTTP GET

command and passing the result on to the preprocessing

stage. The complexity arises when such a command fails.

Depending on the source, this might require attempting to

reconnect to the server, flushing DNS caches and seeing if

the server being used has been taken out of service,

tracerouting to see where the problem is occurring and

possibly trying alternate network connections that might

bypass an outage, etc. When the source is not a simple page

fetched via HTTP the problems become even more

complicated.

3.1.2. Preprocessing. The page or data artifact produced by

the acquisition stage is often a combination of the data we

would like to get and other non-interesting data (such as

ads, template content etc.). There is often markup that

produces a visually interesting page that needs to be

removed for semantic processing. Some pages include

multiple low level artifacts – for example a bulletin board

that includes multiple posts on a single page, or a review

which may consist of a single artifact spanning multiple

pages.

This is also the stage where preliminary, often heuristic

spam removal can occur – for example repeated posts of

identical comment or posts that follow common spam

pattern (e.g., “check out URL”). At the end of this stage we

have a collection of artifacts ready for more complex

processing.

3.1.3. Language. Every domain has its own linguistic

peculiarities. From a medical report that uses odd

abbreviations and jargon to a social networking site where

posts use odd abbreviations and jargon, the system needs to

“transliterate” the artifacts into unambiguous English. This

often includes expanding product names, slang,

abbreviations, etc. and tagging out relevant entities. Basic

actor/action/object parsing may occur at this point as well.

These “parsed” artifacts with all of their meta-data are then

passed on to the application module.

3.1.4. Application. Different applications care about

different aspects of the source data. A music popularity

application would be interested in artists, albums and tracks;

specifically what people have to say about them. A car

“buzz” application might be interested in models, statistics

of the cars and tracks of an entirely different nature.

It is at this stage that the unstructured and semi-

structured posts are converted to “dimensions” of structured

information – for example the number of doors on a car, the

frequency with which a particular musician is being

discussed, etc. These vectors of data are then passed on to

the adjudication stage.

3.1.5. Adjudication. One problem with dealing with

opinions is that people have a tendency to disagree. Thus

the vectors generated from the application section may

contain contradictory opinions – one person might find the

car sporty and fun and another might find the same car

cramped and difficult to drive. The adjudication module

needs to combine these vectors together to create a coherent

view of the underlying data. This might be as simple as

counting the number of positive and negative comments on

a discussion board, but may become more complicated

when the underlying data comes from multiple sources of

very different modalities (sales of songs verses listens of

songs versus views of music videos). Some decisions need

to be made how to do this combination that makes sense for

the application (please see [2] for an extended discussion of

the application of voting theory to this space).

3.2. The Mongoose Control Platform (MCP)

The MONGOOSE Control Platform (MCP), allows

system continuity without visible failure (Figure 3). The

purpose of the MCP is to reduce the Total Cost of

Ownership (TCO) of systems both as they are developed

and after they transfer either from prototype to development

or from research to production. The MCP accomplishes

this by providing the following general functionality:

1. Standard error detection, handling and reporting

2. Standard data analytics on corruption and consistency

reporting, data acquisition layer execution state

3. Data flow integrity and source accessibility assertion

4. System wide data volume monitoring to ensure an

increasingly monotonically increasing input data

stream.

5. System wide data flow and cube output volume

monitoring.

The MCP architecture depicted in the diagram above

comprises the necessary components to fully assert the

functional state of the underlying data flow.

3.2.1. Control Data Acquisition. It receives and processes

protocol related error codes at all levels from HTTP fetcher

error codes to data source response times including socket

timeouts, etc. The Control Data Acquisition components

also gathers and parses Semantic Extractors Failure Codes

such as pages missing, error pages with valid protocol

codes, format changes related to screen scrapers’ page

content changes or API’s (at times unannounced) evolutions

for instance.

Additionally, it is also responsible for handling all data

processing error codes such as aggregation errors,

unexpected data type errors, data output integrity checks,

data corruption error codes and data consistency on a per

modality basis including monotonic and non monotonic

modalities.

When an exception is detected the MCP generates the

corresponding event. All events are forwarded to the Data

Consistency Collator for further evaluation, classification,

corrective action execution, if applicable, and storage.

3.2.2. Data Consistency Collator. This component stores

all data pertinent to the platform’s execution state assertion.

It associates source accessibility with the platform’s state

assertion for example website, network and gateway

outages, etc. It dictates, and manages the standard reporting

format for acquired data volumes, output data volumes, and

output integrity checks in order to detect duplicate and

redundant acquisition.

Control platform

behavior and topology

feedback to platform

components

Data+

Mongoose Control Platform

Execution state,

throughput and

consistency data

Data Consistency

Collator

Control Data

Acquisition

Control Data

Data Store

Component feedback

(recoverable exceptions)

Operator feedback

(unrecoverable exceptions)

Auditor

Control Event Definition and Policy Repository

Control platform user interface

Acquisition Pre-Processing Language Application

Descriptors

Adjudication

Fig. 3: Mongoose Control Platform component architecture

This is also the component responsible for maintaining

the overall platform’s functional states, as well as data

throughput on a per-processing unit basis.

Overall the data volumes at this stage are increasingly

monotonic processing unit attributes. Because of this, the

analytics processing capacity high watermark is also

maintained within the component at this stage.

3.2.3. Operator Feedback. Unrecoverable exceptions do

happen, they simply are a fact of life on regular data

acquisition operations, as internet sites and web services

become unavailable, experience outages, credentials expire,

or simply site operators decide to deploy unannounced

evolutions, therefore effectively making previous versions

unavailable.

In this environment operator feedback is vital. Once the

Control Data Acquisition component has generated an event

and it has been classified as unrecoverable an Operator

feedback message is produced calling for operator action to

be taken. The message and all its attributes are, of course,

subject to the system policies as defined in the MCP policy

repository.

3.2.4. Component Feedback. Recoverable exceptions are

frequently observed as well. Spurious short lived outages,

site response time slow down, data delivery delays because

of unexpected increases in data volumes returned, are some

examples of what could be considered recoverable

exceptions, and handled through dynamic reconfiguration of

the affected components and its dependants.

In this case all events are logged to allow for operator

manual audits, while at the same time recovery actions are

applied based on the defined policies. The actions are

dynamic changes performed to the appropriate acquisition

components and its dependents by the platform. In this

particular case no manual intervention is required.

It should be noted that the there are significant Total

Cost of Ownership (TCO) savings to be realized from the

adaptive nature of platform’s MCP capabilities.

3.2.5. Auditor. This component continuously verifies

expected data volumes per source over the defined time

windows. It compares the current data volumes against the

expected values given the current platform’s functional

state, logs the results and decides whether a platform event

needs to be generated at any given point in time. This is a

vital activity necessary to assert the platform’s data flow

state and output data quality.

The component continuously performs data consistency

checks on expected modalities on a per source basis, it

tracks dataflow volume across sources and cube generators,

as well as the general data cubes scalability and flow.

An integral part of the component also involves data

consistency checks on all post processed data.

The generated events undergo the standard event path

and are acted upon based on the same policies as any other

exception event.

3.2.6. Control Event Definition and Policy Repository.

This component collects and stores all event definitions,

their category severity, priority, etc. Another vital function

of the component is related to the policies associated with

platform events. The event policies include actions, conflict

resolution for individual and chain of events.

The defined actions can be component configuration

changes consumable by the component feedback module, or

operator suggestions regarding the current event.

Once an event is detected, it is classified, stored and the

corresponding policy(s) applied at once, by the MCP

components acting on the affected system components or

issuing an operator notification.

3.2.7. Control Platform User Interface. The control

platform user interface implements an human interface for

MCP management, Essentially implements the platform

console on one hand with on demand a data quality audit

capabilities. It provides the ability to view and modify

policies, perform event management, and general audit

activities related to the platforms execution state. Most

importantly it also provides audit capabilities on the output

data quality of the current platform deployment.

It also delivers aggregated data views on all aspects of

the platform’s integrity. For instance all component

feedback events as well as the list of applied policies that

led to the action(s). It can also be used to view and respond

to any operator notifications issued by the platform as well

as operator initiated actions and responses.

4. Contribution

Technology innovations in Broken English parsing,

holistic entity disambiguation, adjudication and webpage

failure detection and correction are at the heart of

MONGOOSE. Our contributions to the field in these areas

are detailed in [1, 2, 10, 15]. Another research challenge

that was overcome was that of noise effects versus

freshness. There is a tension between the desire for rapid

and frequent updates reflecting the very cutting edge of

what is hot, and minimising the influence of noise in the

charts due to short term spikes. Striking a balance here

poses an interesting challenge. Effects such as weekends,

nights and holidays need to be weighed against events such

as new album releases, celebrity gossip events and award

shows. Any such system will ultimately be a compromise

between being too sensitive and not reactive enough and

optimising this balance is a difficult research challenge. To

solve this issue, we have used a 24 hour window (that is 4

6-hour cycle periods) to smooth out some effects. Other

approaches such as long (multi-month) decays have also

been explored. Ultimately, it is important to have a ranking

scheme that is at least somewhat resistant to “noise”, while

still capturing freshness. For example, one that looks for a

rise in interest in diverse sources and ignores sudden spikes

in a single source.

Another contribution is in the space of spam and on-

topic detection for online text documents. The tremendous

popularity enjoyed by websites such as MySpace and

YouTube also attracts undesirable attention. Spammers and

other commercial sites regularly attempt to peddle their

content via these sites, by masquerading as “bands” or

“users”. This poses a challenge that has two distinct

flavours. The first one is the ability to distinguish valid

artists from those that are nearly product spam. A subject

matter topical dictionary enables a first pass at this, as does

a list of fairly common “spam” phrases, but the ultimate

editorial adjudication at this point is subject matter expert

driven. The second is the ability to filter spam and

profanities.

On the engineering and impact fronts, MONGOOSE has

a compelling value proposition for services practitioners.

The advantages of using MONGOOSE to build one’s data

analytics services offerings are:

1. it speeds up development of new technology in a

targeted space, which means faster development due to

focus on the core issues rather than focusing on

building ingest technology,

2. it is a reusable platform, which reduces the financial

and technical challenges in quickly developing and

deploying text analytics applications,

3. it detects and responds to failures quickly and the

Control Flow is generic across all applications and

domains,

4. it handles real-world text, which is messy, has poor

syntax and little structure or grammar, and

5. it provides data Integrity and consistency, i.e. clean,

consistent data sets over time over the domain of

interest.

It is also worth re-emphasizing that MONGOOSE

technology is best suited:

1. in domains where Proper Language Analysis

(traditional NLP) doesn’t work and one needs to apply

heuristics on the fly,

2. in Data-Driven Agile Development Environments.

MONGOOSE enables agile deployment, which

facilitates iterative and incremental development - the

data gathered from the sources go in the development

process cycle in real-time, and

3. when ingest, pre-processing and rudimentary analysis

of dirty data is not the focus of the effort or project.

MONGOOSE serves as an enabler for the new era in

business innovation. It demonstrates the next wave in

delivering better services and products – the real-time

integration of multiple, relevant online information with

one’s own data to drive new and significant value for, re-

invigorate connection to and strengthen brand affinity to

one’s customer base.

5. Related Work

Most projects that aim to crawl, ingest and process data

from unreliable sources such as the Internet end up having

to address the challenges described in this paper. The

WebFountain architecture [8] included a cluster

management system to control and semi-automatically

address some common failures in the system. UIMA [7],

which primarily focuses on providing a common data

mining infrastructure, implements sophisticated logging and

error reporting, because the failure of one data miner may

affect dependent mining modules. MONGOOSE’s

contribution is to provide a framework that automates the

handling of such error cases.

MONGOOSE is directed towards projects that aim to

provide large-scale high availability. Point solutions for

storage or computational resources exist, such as Google’s

Bigtable [4] and MapReduce[5], Amazon’s Dynamo [6] and

Apache’s Hadoop [3]. However, these systems ensure the

proper operation of distributed computation and storage,

rather than focusing on recovering from failing nodes in

these distributed systems. An implicit assumption made by

all these systems is that desired data is available, and they

simply try to optimize the storage and computation around

it. MONGOOSE, in contrast, fetches and cleans the desired

data while handling a variety of errors, such that the data

can then be processed using the aforementioned systems. It

focuses on the end-to-end processing of data, which often

requires in-depth knowledge of the processes and expected

output of the system.

Taken in the larger context, MONGOOSE is attempting

to address a specific instance of the Byzantine fault

tolerance problem [14], viewing the total system of data

supplier through analytics through publishing of the

adjudicated results as a distributed system. Even in the

worst case of data supplier or analytics errors, maximally

correct results need be generated.

6. Deployments

We have developed solutions based on MONGOOSE for

Media and Entertainment [10, 15], Automotive [11] and

Healthcare [12, 13]. Although a detailed description of a

MONGOOSE deployment is out of the scope of this paper,

the SoundIndex implementation is thoroughly presented in

[15].

7. Conclusion and Future Work

With the proliferation of Web X.0 data and the rapid rate

of services development on this platform, multi-modal

content both on the Web and within enterprises, service

solutions that attempt to ingest and harness the knowledge

embedded therein are up against a significant challenge. Not

only are they required to deliver unique insights through

sophisticated analytics, but they need to be able to handle

multi-modal content ingestion, associated failures, data

integration and pre-processing issues before any analytics

can be performed.

MONGOOSE enables such information service systems

to “get there faster”, while minimizing the ongoing pain

associated with building and maintaining such systems.

Currently, a quantitative evaluation of the impact of

MONGOOSE is difficult; as it has been used to build novel

systems where there was no pre-existing solution. On our

future work agenda is to create instances where such an

evaluation is possible. A naive method would require

developing two service systems in parallel, one using

MONGOOSE and the other by conventional means, and

then measuring the “time to delivery”. A relatively

straightforward way of determining the reduced

maintenance overhead is to convert existing information

services to MONGOOSE-enabled services.

In addition to this, we plan to deploy MONGOOSE for

other domains to continue building on the domain

cartridges. The goal is that over time, there will be

sufficient domain-knowledge built into MONGOOSE such

that any new system simply needs to select the appropriate

MONGOOSE library for their domain. To this end, we also

plan to release a suite of MONGOOSE components that can

be easily integrated into existing systems.

8. References

[1] Alba, A., Bhagwan, V., and Grandison, T. 2008.

Accessing the deep web: when good ideas go bad. In

Companion To the 23rd ACM SIGPLAN Conference

on Object-Oriented Programming Systems Languages

and Applications (Nashville, TN, USA, October 19 -

23, 2008). OOPSLA Companion '08. ACM, New York,

NY, 815-818.

[2] Alba, A., Bhagwan, V., Grace, J., Gruhl, D., Haas, K.,

Nagarajan, M., Pieper, J., Robson, C., and Sahoo, N.

2008. Applications of Voting Theory to Information

Mashups. In Proceedings of the 2008 IEEE

international Conference on Semantic Computing

(August 04 - 07, 2008). ICSC. IEEE Computer Society,

Washington, DC, 10-17.

[3] Apache. Hadoop. http://lucene.apache.org/hadoop/,

2009.

[4] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C.,

Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,

Gruber, R.: Bigtable: A Distributed Storage System for

Structured Data (Awarded Best Paper!). OSDI 2006:

205-218

[5] Dean, J., Ghemawat, S.: MapReduce: Simplified Data

Processing on Large Clusters. OSDI 2004: 137-150

[6] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,

G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,

Vosshall, P., and Vogels, W. 2007. Dynamo: amazon's

highly available key-value store. In Proceedings of

Twenty-First ACM SIGOPS Symposium on Operating

Systems Principles (Stevenson, Washington, USA,

October 14 - 17, 2007). SOSP '07. ACM, New York,

NY, 205-220.

[7] Ferrucci, D. and Lally, A. 2004. UIMA: an

architectural approach to unstructured information

processing in the corporate research environment. Nat.

Lang. Eng. 10, 3-4 (Sep. 2004), 327-348.

[8] Gruhl, D., Chavet, L., Gibson, D., Meyer, J.,

Pattanayak, P., Tomkins, A., and Zien, J. 2004. How to

build a WebFountain: An architecture for very large-

scale text analytics. IBM Syst. J. 43, 1 (Jan. 2004), 64-

77.

[9] Nagios, http://www.nagios.org

[10] BBC Sound Index project,

http://www.almaden.ibm.com/cs/projects/iis/sound/

[11] Zakharian, Z., Mishra, M., Chandramohan, S. “Cars 2.0”.

Masters Thesis, San Jose State Univeristy, December 2008.

[12] Health-e-Assistant project,

http://www.almaden.ibm.com/cs/projects/iis/hea/

[13] AALIM, http://www.almaden.ibm.com/cs/projects/aalim/

[14] Castero, M and Liskov, B. “Practical Byzantine Fault

Tolerance”. Operating Systems Design and Implementation

Feb 1999.

[15] Varun Bhagwan, Tyrone Grandison, Daniel Gruhl, "Sound

Index: Music Charts By The People, For The People". To

appear in Communications of the ACM. September 2009.

Vol 52, No 9.

[16] Yaukey, John. Feds test new data mining program. USA

Today. http://www.usatoday.com/news/washington/2007-03-

07-datatools_N.htm. March 7, 2007

