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Abstract 
The ever increasing amount of content on the Internet has 

fostered many efforts seeking to leverage this potentially 

yottascale information source. Service systems using 

advanced data and text analytics techniques have been 

developed to perform knowledge gathering and information 

discovery over Web data. Information gathered from free 

and public sources on the Web is frequently integrated with 

enterprise and proprietary data to create sophisticated 

service systems able to provide insight in an increasing 

number of business critical areas. Unfortunately, for fixed 

and or limited resource projects, consistent and reliable 

ingestion and integration of content often dominates the 

effort, reducing the time available for developing core 

analytics and presentations that differentiate and define an 

information service. If this initial data extraction, 

translation and loading of information (known as ETL in 

the database world) can be abstracted for these web 

sources, it would provide an important core technology on 

which Web-based information services could be more 

rapidly and inexpensively developed and deployed. This 

paper presents such a system – MONGOOSE – an 

approach that seeks to reduce the time spent creating a 

reliable data ingest and integration system and thus 

reducing the time-to-impact of advanced analytics service 

solutions. 

 

1. Introduction 
 

Service systems that perform data analytics are in high 

demand today; as people try to leverage existing 

information resources, whether in their organizations or 

freely and publicly available. The US Federal government 

spending alone on data analytics systems now totals in the 

hundreds of millions and does not appear to be shrinking 

[16].   

Analytics efforts seek to extract interesting and often 

hidden "nuggets" from within their data by both looking 

more deeply at each source document, as well as looking 

across all data. In order to do so, however, all of these 

systems have to spend a vast amount of time, effort and 

resources simply acquiring, translating and integrating 

content. Thus, the focus of these efforts tends to shift away 

from data analysis – their stated core value proposition – 

and towards data ingestion, preparation and integration. In 

this paper, we present an information-seeking support 

system – MONGOOSE (MONitoring Global Online 

Opinions via Semantic Extraction) – that helps to address 

this imbalance. It should be noted that although 

MONGOOSE was created to fulfill the needs observed in 

our experience with web-scale analytics service systems 

such as  WebFountain [8], SoundIndex [10] etc., it has also 

been successfully applied to diverse non-web content 

domains such as multi-modal mining for healthcare support 

systems [13], corporate communications analytics, and 

social network analysis. In addition to showcasing the broad 

applicability of an unstructured ETL tool such as 

MONGOOSE, these deployments demonstrate the plug-

and-play aspect that allows system creators to rapidly adopt 

and adapt specific components of MONGOOSE to deliver 

complete systems to customers in previously unprecedented 

timeframes. 

This paper is organized as follows. Section 2 presents an 

overview of the MONGOOSE system. Details of the system 

are presented in Section 3, with sub-sections 3.1 and 3.2 

discussing its two core components. Section 4 highlights the 

key contributions of MONGOOSE, while Section 5 points 

to related work in this area. Deployments of MONGOOSE 

are mentioned in Section 6, and the conclusion of the paper 

and planned future work are presented in Section 7. 

 

2. System Overview 
 

At the most basic level, MONGOOSE is a software 

library with supporting code for control flow monitoring, 

analysis and correction that enables Worst-Case Scenario 

Workflow Management1. It allows community-based 

information extraction around specific phenomena that can 

be fed into statistical analysis tools.  

                                                 
1 Worst-Case Scenario Workflow Management systems 

have Murphy’s Law (“anything that can go wrong will go 

wrong”) as their core principle and aim to mitigate these 

non-positive episodes.  



 
 

MONGOOSE Intake Platform 
(MIP) 

MONGOOSE Control 
Platform (MCP) 

Data 
(Semi-structured, 
unstructured and 

structured in a 
badly formed 

syntax)  

 

Data (structured 
and meaningful, 
with evidence) 

Indicators 
Feedback 

Fig. 1: Overview of the MONGOOSE System 

The base MONGOOSE software package consists of the 

Intake Platform and the Control Platform (Figure 1).  The 

user of this system can leverage a series of MONGOOSE 

modules to determine the particular information flow for the 

application they are developing. The user also tells the 

MONGOOSE system the form and content of the data they 

wish to have output.  In leveraging the MONGOOSE 

modules, the user gets a resilient, fault-aware platform that 

ingests data irrespective of what happens either with the 

data sources or with the processing chain.  This also allows 

MONGOOSE instances to be created for a multitude of 

domains; as instantiation involves plugging in domain 

knowledge cartridges into the system and then setting the 

outputs to a form suitable for the domain, e.g. OLAP or BI 

consumption.  At the highest level, MONGOOSE functions 

as a robust get statement that recovers from failures. 

Activity is monitored by the MONGOOSE Control 

Platform, which analyses the system and source state; taking 

corrective action as necessary.  

The MONGOOSE Intake Platform (Figure 2), hereafter 

referred to as the MIP, is comprised of software modules 

that falls into one of five categories: Acquisition, Pre-

Processing, Language, Application Descriptors and 

Adjudication.  As a large proportion of valuable online data 

is in “Broken English”
 2

, the system includes new 

techniques for spotting and making sense of “Broken 

English” use.  

                                                 
2 Current analytics systems assume structured English and 

that Natural Language Processing (NLP) can be used. This 

is not true online. 

The MONGOOSE base package contains acquisition 

templates for the automotive and music industries, pre-

processing modules for comments and counts, the IBM 

Tunable Ranked List Producer algorithm for adjudication 

[2] and a Nagios-based [9] implementation of the 

MONGOOSE Control Platform, which performs workflow 

analysis and general system monitoring. 

 

3. Architecture  

 
3.1. The Mongoose Intake Platform (MIP) 
 

The MONGOOSE Intake Acquisition Modules 

(MIAMs) are base constructs used to build specialized 

ingestors for the domain of interest. The MONGOOSE 

Intake Pre-Processing Modules (MIPMs) extract individual 

comments, posts, discussion points, profiles and counts 

from the ingested data and processes the unstructured 

content to determine spam and identify on-topic and off-

topic information. The MONGOOSE Intake Language 

Modules (MILMs) allows the jargon of the domain of 

interest to be included.  Dictionaries for terminology in 

various domains such as healthcare, media and 

entertainment, law, automobiles, politics, etc. are included 

in these modules. The MONGOOSE Intake Application 

Descriptors Modules (MIADMs) allows the definition of 

the key descriptors for the domain and problem of interest. 

For example, in politics underlying concepts would be 

Integrity, Record, and possibly Funds. The MONGOOSE 

Intake Adjudication Modules (MAMs) combine multi-
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Fig. 2: Mongoose Intake Platform component Architecture 

modal information in a way that is meaningful for the 

business task at hand.    

 

3.1.1. Acquisition. The basic acquisition of the various 

artifacts is usually conceptually simple but practically quite 

difficult. This is often simply issuing an HTTP GET 

command and passing the result on to the preprocessing 

stage. The complexity arises when such a command fails. 

Depending on the source, this might require attempting to 

reconnect to the server, flushing DNS caches and seeing if 

the server being used has been taken out of service, 

tracerouting to see where the problem is occurring and 

possibly trying alternate network connections that might 

bypass an outage, etc. When the source is not a simple page 

fetched via HTTP the problems become even more 

complicated. 

 

3.1.2. Preprocessing. The page or data artifact produced by 

the acquisition stage is often a combination of the data we 

would like to get and other non-interesting data (such as 

ads, template content etc.). There is often markup that 

produces a visually interesting page that needs to be 

removed for semantic processing. Some pages include 

multiple low level artifacts – for example a bulletin board 

that includes multiple posts on a single page, or a review 

which may consist of a single artifact spanning multiple 

pages.  

This is also the stage where preliminary, often heuristic 

spam removal can occur – for example repeated posts of 

identical comment or posts that follow common spam 

pattern (e.g., “check out URL”). At the end of this stage we 

have a collection of artifacts ready for more complex 

processing. 

 

3.1.3. Language. Every domain has its own linguistic 

peculiarities. From a medical report that uses odd 

abbreviations and jargon to a social networking site where 

posts use odd abbreviations and jargon, the system needs to 

“transliterate” the artifacts into unambiguous English. This 

often includes expanding product names, slang, 

abbreviations, etc. and tagging out relevant entities. Basic 

actor/action/object parsing may occur at this point as well. 

These “parsed” artifacts with all of their meta-data are then 

passed on to the application module. 

 

3.1.4. Application. Different applications care about 

different aspects of the source data. A music popularity 

application would be interested in artists, albums and tracks;  

specifically what people have to say about them. A car 

“buzz” application might be interested in models, statistics 

of the cars and tracks of an entirely different nature.  

It is at this stage that the unstructured and semi-

structured posts are converted to “dimensions” of structured 

information – for example the number of doors on a car, the 

frequency with which a particular musician is being 

discussed, etc. These vectors of data are then passed on to 

the adjudication stage. 

 

3.1.5. Adjudication. One problem with dealing with 

opinions is that people have a tendency to disagree. Thus 

the vectors generated from the application section may 

contain contradictory opinions – one person might find the 

car sporty and fun and another might find the same car 



cramped and difficult to drive. The adjudication module 

needs to combine these vectors together to create a coherent 

view of the underlying data. This might be as simple as 

counting the number of positive and negative comments on 

a discussion board, but may become more complicated 

when the underlying data comes from multiple sources of 

very different modalities (sales of songs verses listens of 

songs versus views of music videos). Some decisions need 

to be made how to do this combination that makes sense for 

the application (please see [2] for an extended discussion of 

the application of voting theory to this space). 

 

3.2. The Mongoose Control Platform (MCP)  
 

The MONGOOSE Control Platform (MCP), allows 

system continuity without visible failure (Figure 3). The 

purpose of the MCP is to reduce the Total Cost of 

Ownership (TCO) of systems both as they are developed 

and after they transfer either from prototype to development 

or from research to production.  The MCP accomplishes 

this by providing the following general functionality:  

1. Standard error detection, handling and reporting 

2. Standard data analytics on corruption and consistency 

reporting, data acquisition layer execution state 

3. Data flow integrity and source accessibility assertion  

4. System wide data volume monitoring to ensure an 

increasingly monotonically increasing input data 

stream. 

5. System wide data flow and cube output volume 

monitoring. 

The MCP architecture depicted in the diagram above 

comprises the necessary components to fully assert the 

functional state of the underlying data flow. 

 

3.2.1. Control Data Acquisition. It receives and processes 

protocol related error codes at all levels from HTTP fetcher 

error codes to data source response times including socket 

timeouts, etc. The Control Data Acquisition components 

also gathers and parses Semantic Extractors Failure Codes 

such as pages missing, error pages with valid protocol 

codes, format changes related to screen scrapers’ page 

content changes or API’s (at times unannounced) evolutions 

for instance. 

Additionally, it is also responsible for handling all data 

processing error codes such as aggregation errors, 

unexpected data type errors, data output integrity checks, 

data corruption error codes and data consistency on a per 

modality basis including monotonic and non monotonic 

modalities. 

When an exception is detected the MCP generates the 

corresponding event. All events are forwarded to the Data 

Consistency Collator for further evaluation, classification, 

corrective action execution, if applicable, and storage. 

 

3.2.2. Data Consistency Collator. This component stores 

all data pertinent to the platform’s execution state assertion.  

It associates source accessibility with the platform’s state 

assertion for example website, network and gateway 

outages, etc. It dictates, and manages the standard reporting 

format for acquired data volumes, output data volumes, and 

output integrity checks in order to detect duplicate and 

redundant acquisition. 
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Fig. 3: Mongoose Control Platform component architecture 



This is also the component responsible for maintaining 

the overall platform’s functional states, as well as data 

throughput on a per-processing unit basis. 

Overall the data volumes at this stage are increasingly 

monotonic processing unit attributes. Because of this, the 

analytics processing capacity high watermark is also 

maintained within the component at this stage. 

 

3.2.3. Operator Feedback. Unrecoverable exceptions do 

happen, they simply are a fact of life on regular data 

acquisition operations, as internet sites and web services 

become unavailable, experience outages, credentials expire, 

or simply site operators decide to deploy unannounced 

evolutions, therefore effectively making previous versions 

unavailable. 

In this environment operator feedback is vital. Once the 

Control Data Acquisition component has generated an event 

and it has been classified as unrecoverable an Operator 

feedback message is produced calling for operator action to 

be taken. The message and all its attributes are, of course, 

subject to the system policies as defined in the MCP policy 

repository. 

 

3.2.4. Component Feedback. Recoverable exceptions are 

frequently observed as well. Spurious short lived outages, 

site response time slow down, data delivery delays because 

of unexpected increases in data volumes returned, are some 

examples of what could be considered recoverable 

exceptions, and handled through dynamic reconfiguration of 

the affected components and its dependants.  

In this case all events are logged to allow for operator 

manual audits, while at the same time recovery actions are 

applied based on the defined policies. The actions are 

dynamic changes performed to the appropriate acquisition 

components and its dependents by the platform. In this 

particular case no manual intervention is required. 

It should be noted that the there are significant Total 

Cost of Ownership (TCO) savings to be realized from the 

adaptive nature of platform’s MCP capabilities. 

 

3.2.5. Auditor. This component continuously verifies 

expected data volumes per source over the defined time 

windows. It compares the current data volumes against the 

expected values given the current platform’s functional 

state, logs the results and decides whether a platform event  

needs to be generated at any given point in time. This is a 

vital activity necessary to assert the platform’s data flow 

state and output data quality. 

The component continuously performs data consistency 

checks on expected modalities on a per source basis, it 

tracks dataflow volume across sources and cube generators, 

as well as the general data cubes scalability and flow. 

An integral part of the component also involves data 

consistency checks on all post processed data. 

The generated events undergo the standard event path 

and are acted upon based on the same policies as any other 

exception event. 

 

3.2.6. Control Event Definition and Policy Repository. 

This component collects and stores all event definitions, 

their category severity, priority, etc. Another vital function 

of the component is related to the policies associated with 

platform events. The event policies include actions, conflict 

resolution for individual and chain of events. 

The defined actions can be component configuration 

changes consumable by the component feedback module, or 

operator suggestions regarding the current event. 

Once an event is detected, it is classified, stored and the 

corresponding policy(s) applied at once, by the MCP 

components acting on the affected system components or 

issuing an operator notification. 

 

3.2.7. Control Platform User Interface. The control 

platform user interface implements an human interface for 

MCP management, Essentially implements the platform 

console on one hand with on demand a data quality audit 

capabilities. It provides the ability to view and modify 

policies, perform event management, and general audit 

activities related to the platforms execution state. Most 

importantly it also provides audit capabilities on the output 

data quality of the current platform deployment. 

It also delivers aggregated data views on all aspects of 

the platform’s integrity. For instance all component 

feedback events as well as the list of applied policies that 

led to the action(s). It can also be used to view and respond 

to any operator notifications issued by the platform as well 

as operator initiated actions and responses.  

 

4. Contribution 
 

Technology innovations in Broken English parsing, 

holistic entity disambiguation, adjudication and webpage 

failure detection and correction are at the heart of 

MONGOOSE.  Our contributions to the field in these areas 

are detailed in [1, 2, 10, 15]. Another research challenge 

that was overcome was that of noise effects versus 

freshness. There is a tension between the desire for rapid 

and frequent updates reflecting the very cutting edge of 

what is hot, and minimising the influence of noise in the 

charts due to short term spikes. Striking a balance here 

poses an interesting challenge. Effects such as weekends, 

nights and holidays need to be weighed against events such 

as new album releases, celebrity gossip events and award 

shows. Any such system will ultimately be a compromise 

between being too sensitive and not reactive enough and 

optimising this balance is a difficult research challenge. To 

solve this issue, we have used a 24 hour window (that is 4 

6-hour cycle periods) to smooth out some effects. Other 

approaches such as long (multi-month) decays have also 

been explored. Ultimately, it is important to have a ranking 

scheme that is at least somewhat resistant to “noise”, while 

still capturing freshness. For example, one that looks for a 

rise in interest in diverse sources and ignores sudden spikes 

in a single source. 



Another contribution is in the space of spam and on-

topic detection for online text documents. The tremendous 

popularity enjoyed by websites such as MySpace and 

YouTube also attracts undesirable attention. Spammers and 

other commercial sites regularly attempt to peddle their 

content via these sites, by masquerading as “bands” or 

“users”. This poses a challenge that has two distinct 

flavours. The first one is the ability to distinguish valid 

artists from those that are nearly product spam. A subject 

matter topical dictionary enables a first pass at this, as does 

a list of fairly common “spam” phrases, but the ultimate 

editorial adjudication at this point is subject matter expert 

driven. The second is the ability to filter spam and 

profanities. 

On the engineering and impact fronts, MONGOOSE has 

a compelling value proposition for services practitioners. 

The advantages of using MONGOOSE to build one’s data 

analytics services offerings are:  

1. it speeds up development of new technology in a 

targeted space, which means faster development due to 

focus on the core issues rather than focusing on 

building ingest technology, 

2. it is a reusable platform, which reduces the financial 

and technical challenges in quickly developing and 

deploying text analytics applications, 

3. it detects and responds to failures quickly and the 

Control Flow is generic across all applications and 

domains, 

4. it handles real-world text, which is messy, has poor 

syntax and little structure or grammar, and  

5. it provides data Integrity and consistency, i.e. clean, 

consistent data sets over time over the domain of 

interest. 

It is also worth re-emphasizing that MONGOOSE 

technology is best suited:  

1. in domains where Proper Language Analysis 

(traditional NLP) doesn’t work and one needs to apply 

heuristics on the fly,  

2. in Data-Driven Agile Development Environments. 

MONGOOSE enables agile deployment, which 

facilitates iterative and incremental development - the 

data gathered from the sources go in the development 

process cycle in real-time, and  

3. when ingest, pre-processing and rudimentary analysis 

of dirty data is not the focus of the effort or project.  

 

MONGOOSE serves as an enabler for the new era in 

business innovation. It demonstrates the next wave in 

delivering better services and products – the real-time 

integration of multiple, relevant online information with 

one’s own data to drive new and significant value for, re-

invigorate connection to and strengthen brand affinity to 

one’s customer base. 

 

5. Related Work 
  

Most projects that aim to crawl, ingest and process data 

from unreliable sources such as the Internet end up having 

to address the challenges described in this paper. The 

WebFountain architecture [8] included a cluster 

management system to control and semi-automatically 

address some common failures in the system. UIMA [7], 

which primarily focuses on providing a common data 

mining infrastructure, implements sophisticated logging and 

error reporting, because the failure of one data miner may 

affect dependent mining modules. MONGOOSE’s 

contribution is to provide a framework that automates the 

handling of such error cases.  

MONGOOSE is directed towards projects that aim to 

provide large-scale high availability. Point solutions for 

storage or computational resources exist, such as Google’s 

Bigtable [4] and MapReduce[5], Amazon’s Dynamo [6] and 

Apache’s Hadoop [3]. However, these systems ensure the 

proper operation of distributed computation and storage, 

rather than focusing on recovering from failing nodes in 

these distributed systems. An implicit assumption made by 

all these systems is that desired data is available, and they 

simply try to optimize the storage and computation around 

it. MONGOOSE, in contrast, fetches and cleans the desired 

data while handling a variety of errors, such that the data 

can then be processed using the aforementioned systems. It 

focuses on the end-to-end processing of data, which often 

requires in-depth knowledge of the processes and expected 

output of the system.  

Taken in the larger context, MONGOOSE is attempting 

to address a specific instance of the Byzantine fault 

tolerance problem [14], viewing the total system of data 

supplier through analytics through publishing of the 

adjudicated results as a distributed system. Even in the 

worst case of data supplier or analytics errors, maximally 

correct results need be generated.  

 

6. Deployments 
 

We have developed solutions based on MONGOOSE for 

Media and Entertainment [10, 15], Automotive [11] and 

Healthcare [12, 13]. Although a detailed description of a 

MONGOOSE deployment is out of the scope of this paper, 

the SoundIndex implementation is thoroughly presented in 

[15]. 

 

7. Conclusion and Future Work 
 

With the proliferation of Web X.0 data and the rapid rate 

of services development on this platform, multi-modal 

content both on the Web and within enterprises, service 

solutions that attempt to ingest and harness the knowledge 

embedded therein are up against a significant challenge. Not 

only are they required to deliver unique insights through 

sophisticated analytics, but they need to be able to handle 

multi-modal content ingestion, associated failures, data 



integration and pre-processing issues before any analytics 

can be performed.  

MONGOOSE enables such information service systems 

to “get there faster”, while minimizing the ongoing pain 

associated with building and maintaining such systems.  

Currently, a quantitative evaluation of the impact of 

MONGOOSE is difficult; as it has been used to build novel 

systems where there was no pre-existing solution. On our 

future work agenda is to create instances where such an 

evaluation is possible. A naive method would require 

developing two service systems in parallel, one using 

MONGOOSE and the other by conventional means, and 

then measuring the “time to delivery”. A relatively 

straightforward way of determining the reduced 

maintenance overhead is to convert existing information 

services to MONGOOSE-enabled services.  

In addition to this, we plan to deploy MONGOOSE for 

other domains to continue building on the domain 

cartridges. The goal is that over time, there will be 

sufficient domain-knowledge built into MONGOOSE such 

that any new system simply needs to select the appropriate 

MONGOOSE library for their domain. To this end, we also 

plan to release a suite of MONGOOSE components that can 

be easily integrated into existing systems.  
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