
Deactivation of Unwelcomed Deep Web Extraction Services through Random

Injection

Varun Bhagwan, Tyrone Grandison

IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 USA

{vbhagwan, tyroneg}@us.ibm.com

Abstract

Websites serve content both through Web Services as well

as through user-viewable webpages. While the consumers

of web-services are typically ‘machines’, webpages are

meant for human users. It is highly desirable (for reasons

of security, revenue, ownership, availability etc.) for

service providers that content that will undergo further

processing be fetched in a prescribed fashion, preferably

through a supplied Web Services. In fact, monetization of

partnerships within a services ecosystem normally means

that website data translate into valuable revenue.

Unfortunately, it is quite commonplace for arbitrary

developers to extract or leverage information from

websites without asking for permission and or negotiating

a revenue sharing agreement. This may translate to

significant lost income for content providers. Even in

cases where website owners are happy to share the data,

they may want users to adopt dedicated Web Service APIs

(and associated API-servers) rather than putting a load

on their revenue-generating websites. In this paper, we

introduce a mechanism that disables automated web

scraping agents, thus forcing clients to conform to the

provided Web Services.

1. Introduction

Many companies take the prudent approach when it comes

to the development of systems that use online data from

external parties, i.e. they undergo a formal documented

legal process where consent is granted and a revenue

package is agreed upon. However, these same companies

tend to be frustrated when it comes to their own data

being leveraged by other parties, who have less to lose

and that do not take this prudent approach.

These companies normally employ web-scraping [1] to

harvest their information. Formally defined, web-scraping

[1] is the act of going through the content of a website for

the purpose of extracting information from it. It is

typically implemented by means of authoring an

automated agent that makes appropriate HTTP requests to

the website with the desired content, and 'scrapes' the said

content from the result of the HTTP request (related

issues have been dealt in detail in [2]). The scraping (or

extraction or harvesting) is used to collect content such as

user-data, image-links, user-comments, email addresses or

any other data of potential value from the source website.

In the most malicious of cases, it can involve copying

entire websites to direct traffic away from the source

website and onto the (typically spam and or ad infested)

malicious website. In this paper, we introduce a

mechanism, Random Injection-based Deactivation (RID),

to forcibly disallow automated web-scraping agents from

harvesting or collecting data from a website.

2. Background

Figure 1 shows the HTML code that web scrapers would

need to navigate in order to obtain image links for artists.

Figure 1. Image Harvesting.

Another example of the information that screen scrapers

may be interested in is depicted in Figure 2, which shows

the HTML hierarchy that the scrapers would navigate

when extracting user data and comments.

Figure 2. User Comment Harvesting

As stated previously, even if web-scraping is being done

completely legitimately and for acceptable reasons, source

websites may wish to divert traffic away from their main

servers, and or to encourage such 'scrapers' to switch to

using the provided Web Service APIs instead of scraping

the (HTML) source code, whether for technical or

Navigate to the

comment area

using this html

hierarchy.

The Comment data

to be harvested

using web-scraping

techniques

The html
structure that

needs to be
traversed to get

the image is

displayed here.

The image being

‘harvested’

business/financial reasons. RID technology also enables

this to happen.

Figure 3 shows the status quo in webpage provision today.

Upon each data (HTTP) request, the source web server

generates a dynamic page as a result of the HTTP request.

In the end, the result, i.e. the HTML code, is presented to

the end user and is easily harvestable by web scrapers.

Figure 3. Typical Web Scraping

3. System

Figure 4 illustrates how RID technology may be included

into the typical web server environment. In order to

optimize the process of generating the dynamic HTTP

request-result, the web-server 'pre-generates' the set of

redundant code, and simply 'injects' randomly selected

code into the base code at appropriate points (where the

data needs to be hidden from web-scrapers).

Figure 4. Random Injection based Deactivation

(RID) of Web-Scrapers

As there is no change to the display on the screen, the end

user experience remains the same, thus achieving the

technology’s objective of providing completely

transparent and non-intrusive deactivation of web-

scraping applications and services.

The following provides some insight into the inner

operation of RID technology. Assuming that C is the

set/list of content to be protected and that H is the HTML

page normally rendered, the RID algorithm takes as input

the content elements to be protected, C, i.e. content types

(in the above scenario, this maps to image-files, user-

comments etc.) and the (HTML) code that was rendered

normally, H, and returns the new web scraper resistant

code. As currently implemented, this technology is

agnostic of the languages and vocabularies used for the

rendered code as it focuses on the content elements to be

protected. This design decision enables the system to

work with new and emerging Web authoring technologies.

4. Related Work

Blocking IP addresses [3] stops both legitimate and

illegitimate extraction from a (set of) IP address(es) and

thus is not suitable when access is process-focused. Also,

the random insertion of CAPTCHA [4] in scraping is

common practice, which differs from our approach; in that

our approach is completely transparent to legitimate users.

Paid content sites (e.g. age appropriate entertainment)

have a legacy of anti-crawling. These sites control access

by means of user login. Other sites that make "small

changes" or "hidden random strings" do not make their

mechanisms "completely hidden" from end users.

5. Conclusion

The proposed system provides a way to disable web

scraping by obfuscating the code rendered to the Web

client, such that although the rendered webpage (as seen

on the screen by the end-user) is unchanged the code

behind the webpage is changed (dynamically) upon every

fetch request. This code-poisoning technique ensures that

no automated agent can reliably collect data from the

website, thus rendering the extraction agent ineffective. In

the end, the data consumer has no choice but to adopt the

content provider’s Web Services to gain access to the

data.

References

[1] Web Scraping

http://en.wikipedia.org/wiki/Web_scraping

[2] Alfredo Alba, Varun Bhagwan, Tyrone Grandison:

Accessing the deep web: when good ideas go bad.

OOPSLA Companion 2008: 815-818

[3] IP Blocking,

http://en.wikipedia.org/wiki/Wikipedia:Blocking_IP_addr

esses

[4] Luis von Ahn, Manuel Blum, Nicholas J. Hopper and

John Langford. "CAPTCHA: Using Hard AI Problems for

Security". The proceedings of Eurocrypt 2003. Warsaw,

Poland, May 4–8, 2003. LNCS Vol 2656/2003.

HTTP WebServer

Content Code
Generator

Web-Scraper

End User

HTTP Request &
Response

HTTP Request &
Response

Content
Harvester

RID
Code

Injection

Injection
Database

X

Rendered Content

Random Injection of HTML Code

<tr><tr><td><td></td></td></tr>
 <td align="center" valign="top" width="150" bgcolor="FF9933" style="word-wrap: break-
word">
…..<a

href="http://profile.myspace.com/index.cfm?fuseaction=user.viewprofile&friendid=321865836"
>
<img src="http://a181.ac-
images.myspacecdn.com/images01/113/s_53fde2989fb50a6c872cfc2a2164a57c.jpg"
border="0"/>

 </td><td></td><td align=“center” valign=“top” width=“150”></td>

 <td bgcolor="F9D6B4" align="left" valign="top" width="260" style="word-wrap: break-word"
class="columnsWidening">Jul 12 2008 10:35 PM

 U R THE BEST SINGER IN THE WORLD
 </td>

HTTP WebServer

Content Code
Generator

Web-Scraper

End User

HTTP Request &
Response

HTTP Request &
Response

Content
Harvest

<tr>
 <td align="center" valign="top" width="150" bgcolor="FF9933" style="word-wrap: break-word">

iLUVKutsANdBURses

<img src="http://a181.ac-
images.myspacecdn.com/images01/113/s_53fde2989fb50a6c872cfc2a2164a57c.jpg"
border="0"/>

 </td>
 <td bgcolor="F9D6B4" align="left" valign="top" width="260" style="word-wrap: break-word"
class="columnsWidening">Jul 12 2008 10:35 PM

 U R THE BEST SINGER IN THE WORLD
 </td>
</tr>

HTML Code

Rendered Content

Harvested Content
Username: iLUVKutsANdBURses
Comment Time: Jul 12 2008 10.35 PM
Comment: U R THE BET SINGER IN THE
WORLD

