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INTRODUCTION

Privacy-preserving data mining (PPDM) refers to the 
area of data mining that seeks to safeguard sensitive 
information from unsolicited or unsanctioned disclo-
sure. Most traditional data mining techniques analyze 
and model the data set statistically, in aggregation, 
while privacy preservation is primarily concerned with 
protecting against disclosure individual data records. 
This domain separation points to the technical feasibil-
ity of PPDM.

Historically, issues related to PPDM were first 
studied by the national statistical agencies interested 
in collecting private social and economical data, such 
as census and tax records, and making it available for 
analysis by public servants, companies, and researchers. 
Building accurate socioeconomical models is vital for 
business planning and public policy. Yet, there is no way 
of knowing in advance what models may be needed, 
nor is it feasible for the statistical agency to perform 
all data processing for everyone, playing the role of 
a trusted third party. Instead, the agency provides the 
data in a sanitized form that allows statistical processing 
and protects the privacy of individual records, solving 
a problem known as privacy-preserving data publish-
ing. For a survey of work in statistical databases, see 
Adam and Wortmann (1989) and Willenborg and de 
Waal (2001).

The term privacy-preserving data mining was in-
troduced in the papers Agrawal and Srikant (2000) and 
Lindell and Pinkas (2000). These papers considered 
two fundamental problems of PPDM: privacy-preserv-
ing data collection and mining a data set partitioned 
across several private enterprises. Agrawal and Srikant 
devised a randomization algorithm that allows a large 
number of users to contribute their private records for 
efficient centralized data mining while limiting the 

disclosure of their values; Lindell and Pinkas invented 
a cryptographic protocol for decision tree construction 
over a data set horizontally partitioned between two 
parties. These methods were subsequently refined and 
extended by many researchers worldwide.

Other areas that influence the development of PPDM 
include cryptography and secure multiparty computa-
tion (Goldreich, 2004; Stinson, 2006), database query 
auditing for disclosure detection and prevention (Dinur 
& Nissim, 2003; Kenthapadi, Mishra, & Nissim, 2005; 
Kleinberg, Papadimitriou, & Raghavan, 2000), data-
base privacy and policy enforcement (Aggarwal et al., 
2004; Agrawal, Kiernan, Srikant, & Xu 2002), database 
security (Castano, Fugini, Martella, & Samarati, 1995), 
and of course, specific application domains.

SURVEY OF APPROACHES

The naïve approach to PPDM is “security by obscurity,” 
where algorithms have no proven privacy guarantees. 
By its nature, privacy preservation is claimed for all 
data sets and attacks of a certain class, a claim that can-
not be proven by examples or informal considerations 
(Chawla, Dwork, McSherry, Smith, & Wee, 2005). We 
will avoid further discussion of this approach in this 
forum. Recently, however, a number of principled ap-
proaches have been developed to enable PPDM, some 
listed below according to their method of defining and 
enforcing privacy.

Suppression

Privacy can be preserved by simply suppressing all sen-
sitive data before any disclosure or computation occurs. 
Given a database, we can suppress specific attributes 
in particular records as dictated by our privacy policy. 
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For a partial suppression, an exact attribute value can 
be replaced with a less informative value by rounding 
(e.g., $23.45 to $20.00), top coding (e.g., age above 70 
is set to 70), generalization (e.g., address to zip code), 
using intervals (e.g., age 23 to 20-25, name Johnson to 
J-K), and so forth. Often the privacy guarantee trivi-
ally follows from the suppression policy. However, the 
analysis may be difficult if the choice of alternative 
suppressions depends on the data being suppressed, 
or if there is dependency between disclosed and sup-
pressed data. Suppression cannot be used if data mining 
requires full access to the sensitive values.

Rather than protecting the sensitive values of indi-
vidual records, we may be interested in suppressing the 
identity (of a person) linked to a specific record. The 
process of altering the data set to limit identity linkage 
is called de-identification. One popular definition for 
de-identification privacy is k-anonymity, formulated 
in Samarati and Sweeney (1998). A set of personal 
records is said to be k-anonymous if every record is 
indistinguishable from at least k − 1 other records over 
given quasi-identifier subsets of attributes. A subset of 
attributes is a quasi-identifier if its value combination 
may help link some record to other personal information 
available to an attacker, for example, the combination 
of age, sex, and address.

To achieve k-anonymity, quasi-identifier attributes 
are completely or partially suppressed. A particular 
suppression policy is chosen to maximize the utility 
of the k-anonymized data set (Bayardo & Agrawal, 
2005; Iyengar, 2002). The attributes that are not among 
quasi-identifiers, even if sensitive (e.g., diagnosis), 
are not suppressed and may get linked to an identity 
(Machanavajjhala, Gehrke, Kifer, & Venkitasubra-
maniam, 2006). Utility maximization may create an 
exploitable dependence between the suppressed data 
and the suppression policy. Finally, k-anonymity is 
difficult to enforce before all data are collected in one 
trusted place; however, a cryptographic solution is 
proposed in Zhong, Yang, and Wright (2005) based 
on Shamir’s secret sharing scheme.

Suppression can also be used to protect from the 
discovery of certain statistical characteristics, such 
as sensitive association rules, while minimizing the 
distortion of other data mining results. Many related 
optimization problems are computationally intractable, 
but some heuristic algorithms were studied (Atallah, 
Elmagarmid, Ibrahim, Bertino, & Verykios, 1999; 
Oliveira & Zaïane, 2003).

Randomization

Suppose there is one central server, for example, of a 
company, and many customers, each having a small 
piece of information. The server collects the information 
and performs data mining to build an aggregate data 
model. The randomization approach (Warner, 1965) 
protects the customers’ data by letting them randomly 
perturb their records before sending them to the server, 
taking away some true information and introducing 
some noise. At the server’s side, statistical estimation 
over noisy data is employed to recover the aggregates 
needed for data mining. Noise can be introduced, for 
example, by adding or multiplying random values to 
numerical attributes (Agrawal & Srikant, 2000) or by 
deleting real items and adding bogus items to set-valued 
records (Evfimievski, Srikant, Agrawal, & Gehrke, 
2002; Rizvi & Haritsa, 2002). Given the right choice 
of the method and the amount of randomization, it is 
sometimes possible to protect individual values while 
estimating the aggregate model with relatively high 
accuracy.

Privacy protection by data perturbation has been 
extensively studied in the statistical databases com-
munity (Adam & Wortmann, 1989; Willenborg & de 
Waal, 2001). In contrast to the above scenario, this 
research focuses mainly on the protection of published 
views once all original data are collected in a single 
trusted repository. Many more perturbation techniques 
are available in this case, including attribute swapping 
across records and data resampling by imputation.

A popular privacy definition to characterize random-
ization has its roots in the classical secrecy framework 
(Shannon, 1949) and in the work on disclosure risk 
and harm measures for statistical databases (Lambert, 
1993), but received its current formulation only recently 
(Blum, Dwork, McSherry, & Nissim, 2005; Dinur & 
Nissim, 2003; Evfimievski, Gehrke, & Srikant, 2003). 
To deal with the uncertainty arising from randomiza-
tion, the data miner’s knowledge (belief) is modeled as 
a probability distribution. A simplified version of the 
definition is given in the next paragraphs.

Suppose Alice is a customer and Bob is a company 
employee interested in mining customers’ data. Alice 
has a private record x and a randomization algorithm 
R. To allow Bob to do the mining while protecting her 
own privacy, Alice sends Bob a randomized record x′ 
∼ R(x). Let us denote by pR (x′ | x) the probability that 
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algorithm R outputs x′ on input x. We say that algorithm 
R achieves ε-leakage (also called ε-privacy or at most 
γ-amplification) at output x′ if for every pair of private 
records x1 and x2 we have

pR (x′ | x1)  /  pR (x′ | x2)  ≤  γ,   where  γ  =  exp(ε).
We assume that Bob has some a priori belief about 

Alice’s record, defined as the probability distribution 
p(x) over all possible private records. Once Bob re-
ceives a randomized record, his belief changes to some 
a posteriori distribution. If randomization R achieves 
ε-leakage at output x′, then randomized record x′ gives 
Bob only a bounded amount of knowledge of Alice’s 
unknown private record x. In fact, for every question 
Q about Alice’s record, Bob’s a posteriori belief p(Q | 
x′ ) that the answer to Q is yes is bounded with respect 
to his a priori belief p(Q) as follows.

p(Q | x′ )    
≤   γ

p(Q)
1 – p(Q 
| x′ )

1 
– p(Q)

If R achieves ε-leakage at every output, Bob’s 
knowledge gain about Alice’s record is always bounded; 
if R achieves ε-leakage at some outputs but not others, 
Bob’s knowledge gain is bounded only with a certain 
probability.  

The above definition assumes that Bob cannot gain 
any knowledge of Alice’s record by collecting data 
from other customers, that is, that all customers are 
independent. The parameter ε is chosen to attain the 
right balance between privacy and the accuracy of the 
aggregate estimators used by the data miner (Dwork, 
McSherry, Nissim, & Smith, 2006). One advantage of 
randomization is that privacy guarantees can be proven 
by just studying the randomization algorithm, not the 
data mining operations. One disadvantage is that the 
results are always approximate; high-enough accuracy 
often requires a lot of randomized data (Evfimievski 
et al., 2002).

Cryptography

The cryptographic approach to PPDM assumes that the 
data are stored at several private parties who agree to 
disclose the result of a certain data mining computation 
performed jointly over their data. The parties engage 
in a cryptographic protocol; that is, they exchange 
messages encrypted to make some operations efficient 
while others computationally intractable. In effect, they 

blindly run their data mining algorithm. Classical works 
in secure multiparty computation such as Yao (1986) 
and Goldreich, Micali, and Wigderson (1987) show that 
any function F(x1, x2, …, xn) computable in polynomial 
time is also securely computable in polynomial time 
by n parties, each holding one argument, under quite 
broad assumptions regarding how much the parties 
trust each other. However, this generic methodology 
can only be scaled to database-sized arguments with 
significant additional research effort.

The first adaptation of cryptographic techniques to 
data mining is done by Lindell and Pinkas (2000) for the 
problem of decision tree construction over horizontally 
partitioned data; it was followed by many papers cover-
ing different data mining techniques and assumptions. 
The assumptions include restrictions on the input data 
and permitted disclosure, the computational hardness 
of certain mathematical operations such as factoring 
a large integer, and the adversarial potential of the 
parties involved: The parties may be passive (honest 
but curious, running the protocol correctly but taking 
advantage of all incoming messages) or malicious 
(running a different protocol), some parties may be 
allowed to collude (represent a single adversary), 
and so forth. In addition to the generic methodology 
such as oblivious transfer and secure Boolean circuit 
evaluation, the key cryptographic constructs often 
used in PPDM include homomorphic and commutative 
encryption functions, secure multiparty scalar product, 
and polynomial computation. The use of randomness 
is essential for all protocols.

The privacy guarantee used in this approach is 
based on the notion of computational indistinguish-
ability between random variables. Let Xk and Yk be 
two random variables that output Boolean vectors of 
length polynomial in k; they are called computation-
ally indistinguishable if for all polynomial algorithms 
Ak (alternatively, for any sequence of circuits of size 
polynomial in k), for all c > 0, and for all sufficiently 
large integers k, 

| Prob [Ak (Xk) = 1]  –  Prob [Ak (Yk) = 1] |  <  1 / kc.
The above essentially says that no polynomial 

algorithm can tell apart Xk from Yk. To prove that a 
cryptographic protocol is secure, we show that each 
party’s view of the protocol (all its incoming messages 
and random choices) is computationally indistinguish-
able from a simulation of this view by this party alone. 
When simulating the view of the protocol, the party 
is given everything it is allowed to learn, including 
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the final data mining output. The exact formulation 
of the privacy guarantee depends on the adversarial 
assumptions. Goldreich (2004) and Stinson (2006) 
provide a thorough introduction into the cryptographic 
framework.

Scalability is the main stumbling block for the cryp-
tographic PPDM; the approach is especially difficult 
to scale when more than a few parties are involved. 
Also, it does not address the question of whether the 
disclosure of the final data mining result may breach 
the privacy of individual records.

Summarization

This approach to PPDM consists of releasing the data 
in the form of a summary that allows the (approximate) 
evaluation of certain classes of aggregate queries while 
hiding the individual records. In a sense, summarization 
extends randomization, but a summary is often expected 
to be much shorter, ideally of sublinear size with respect 
to the original data set. The idea goes back to statistical 
databases, where two summarization techniques were 
studied and widely applied: sampling and tabular data 
representation (Adam & Wortmann, 1989; Willenborg 
& de Waal, 2001). Sampling corresponds to replacing 
the private data set with a small sample of its records, 
often combined with suppression or perturbation of 
their values to prevent re-identification. Tabular repre-
sentation summarizes data in a collection of aggregate 
quantities such as sums, averages, or counts aggregated 
over the range of some attributes while other attributes 
are fixed, similarly to OLAP (online analytical process-
ing) cubes. Verifying privacy guarantees for tabular data 
is challenging because of the potential for disclosure 
by inference. Privacy in OLAP cubes was also studied 
by Wang, Jajodia, and Wijesekera (2004) and Agrawal, 
Srikant, and Thomas (2005).

Some of the more recent summarization methods 
are based on pseudorandom sketches, a concept bor-
rowed from limited-memory data-stream processing. 
Here is an illustration of one such method. Suppose 
Alice has a small private set S of her favorite book 
titles and wants to send to Bob a randomized version 
of this set. Alice splits S into two disjoint subsets, S = 
S0 ∪ S1, then constructs her randomized record SR by 
including S1, excluding S0, and for every book not in S 
including it into SR at random with probability 1/2. If 
there are 1,000,000 possible book titles, SR will contain 
around 500,000 items, most of them purely random. 

Luckily, however, SR can be shortened. Let G(ξ, i) be 
a pseudorandom generator that takes a short random 
seed ξ and a book number i and computes a bit bi. Now 
Alice has a better strategy: Once she selects S0 and S1 
as before, she sends to Bob a randomly chosen seed ξ 
such that G(ξ, #book) = 0 for all books in S0 and G(ξ, 

#book) = 1 for all books in S1. Bob can use G and ξ to 
reconstruct the entire randomized record; and if G is 
sufficiently well mixing, every book not in S still sat-
isfies G(ξ, #book) = 1 with probability 1/2. Thus, the 
short seed ξ serves as the summary of a randomized 
record. For complete analysis, see Evfimievski et al. 
(2003) and Mishra and Sandler (2006).

The summarization approach is still in its infancy, 
so more results are likely to come in the future. There 
has also been some work on combining sketches and 
approximation techniques with the cryptographic ap-
proach (Feigenbaum, Ishai, Malkin, Nissim, Strauss, 
& Wright, 2001; Halevi, Krauthgamer, Kushilevitz, 
& Nissim, 2001). Feigenbaum et al. observe that the 
disclosure of an approximate function fappr(x) ≈ f (x) 
over private data x may be unacceptable even if the 
exact result f (x) is permitted to disclose; indeed, just 
by learning whether fappr(x) ≤ f (x) or fappr(x) > f (x), the 
adversary may already get an extra bit of information 
about x. This issue is important to keep in mind when 
designing sketch-based PPDM protocols.

APPLICATION SCENARIOS

• Surveys and Data Collection. Companies col-
lect personal preferences of their customers for 
targeted product recommendations, or conduct 
surveys for business planning; political parties 
conduct opinion polls to adjust their strategy. The 
coverage of such data collection may significantly 
increase if all respondents are aware that their 
privacy is provably protected, also eliminating 
the bias associated with evasive answers. The 
randomization approach has been considered as 
a solution in this domain (Agrawal & Srikant, 
2000; Evfimievski et al., 2002; Warner, 1965).

• Monitoring for Emergencies. Early detection 
of large-scale abnormalities with potential im-
plications for public safety or national security is 
important in protecting our well-being. Disease 
outbreaks, environmental disasters, terrorist acts, 
and manufacturing accidents can often be detected 
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and contained before they endanger a large popula-
tion. The first indication of an impending disaster 
can be difficult to notice by looking at any indi-
vidual case, but is easy to see using data mining: 
an unusual increase in certain health symptoms 
or nonprescription drug purchases, a surge in car 
accidents, a change in online traffic pattern, and so 
forth. To be effective, an early-detection system 
would have to collect personal, commercial, and 
sensor data from a variety of sources, making 
privacy issues paramount (DeRosa, 2004; Perez-
Pena, 2003).

• Product Traceability. Before a product (e.g., 
a car or a drug) reaches its end user, it usually 
passes through a long chain of processing steps, 
such as manufacturing, packaging, transporta-
tion, storage, and sale. In the near future, many 
products and package units will carry a radio 
frequency identification (RFID) tag and will 
be automatically registered at every processing 
step (Finkenzeller, 2003; Garfinkel & Rosen-
berg, 2005). This will create a vast distributed 
collection of RFID traces, which can be mined 
to detect business patterns, market trends, inef-
ficiencies and bottlenecks, criminal activity such 
as theft and counterfeiting, and so on. However, 
such extremely detailed business process data 
are a highly valuable and sensitive asset to the 
companies involved. Privacy safeguards will be 
very important to enable cooperative RFID data 
mining.

• Medical Research. Personal health records are 
one of the most sensitive types of private data; 
their privacy standards have been codified into law 
in many countries, for example HIPAA (Health 
Insurance Portability and Accountability Act) in 
the United States (Office for Civil Rights [OCR], 
2003). On the other hand, data mining over health 
records is vital for medical, pharmaceutical, and 
environmental research. For example, a researcher 
may want to study the effect of a certain gene A on 
an adverse reaction to drug B (Agrawal, Evfimi-
evski, & Srikant, 2003). However, due to privacy 
concerns, the DNA sequences and the medical 
histories are stored at different data repositories 
and cannot be brought together. Then, PPDM 
over vertically partitioned data can be used to 
compute the aggregate counts while preserving 
the privacy of records.

• Social Networks. In business as well as in life, 
the right connections make a huge difference. 
Whether it is expertise location, job search, or 
romance matchmaking, finding new connections 
is notoriously difficult, not least because the 
publicly available data are often very scarce and 
of low quality. Most of the relevant information 
is personal, copyrighted, or confidential, and 
therefore kept away from the Web. It is possible 
that PPDM techniques can be utilized to allow 
limited disclosure options, prompting more people 
to engage in productive social networking and 
guarding against abuse.

FUTURE TRENDS

The main technical challenge for PPDM is to make its 
algorithms scale and achieve higher accuracy while 
keeping the privacy guarantees. The known proof 
techniques and privacy definitions are not yet flex-
ible enough to take full advantage of existing PPDM 
approaches. Adding a minor assumption (from the 
practical viewpoint) may slash the computation cost 
or allow much better accuracy if the PPDM method-
ology is augmented to leverage this assumption. On 
the other hand, proving complexity lower bounds and 
accuracy upper bounds will expose the theoretical 
limits of PPDM.

One particularly interesting minor assumption is 
the existence of a computationally limited trusted third 
party. Computer manufacturers such as IBM produce 
special devices called secure coprocessors (Dyer et al. 
2001) that contain an entire computer within a sealed 
tamper-proof box. Secure coprocessors are able to 
withstand most hardware and software attacks, or de-
stroy all data if opened. For practical purposes, these 
devices can be considered trusted parties, albeit very 
restricted in the speed of computation, in the volume 
of storage, and in communication with the untrusted 
components. It is known that secure coprocessors can 
be leveraged to enable privacy-preserving operations 
over data sets much larger than their storage capacity 
(Agrawal, Asonov, Kantarcioglu, & Li, 2006; Smith & 
Safford, 2000). Thus, applying them to PPDM looks 
natural.

If a data mining party cannot get accurate results 
because of privacy constraints enforced by the data 
contributors, it may be willing to pay for more data. 
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Kleinberg, Papadimitriou, and Raghavan (2001) suggest 
measuring the amount of private information in terms 
of its monetary value as a form of intellectual property. 
The cost of each piece of data must be determined in a 
fair way so as to reflect the contribution of this piece 
in the overall profit. The paper borrows the notions of 
fairness from the theory of coalitional games: the core 
and the Shapley value. Bridging game theory and PPDM 
could lay the theoretical foundation for a market of 
private data, where all participants receive appropriate 
compensations for their business contribution.

Among potential future applications for PPDM, 
we would like to emphasize data mining in health 
care and medical research. During the last few years, 
the attention of the U.S. government has been focused 
on transitioning the national health care system to an 
infrastructure based upon information technology 
(President’s Information Technology Advisory Com-
mittee [PITAC], 2004); a similar trend occurs or is 
expected in countries around the world. Within a short 
time, millions of medical records will be available for 
mining, and their privacy protection will be required by 
law, potentially creating an urgent demand for PPDM. 
In addition to the traditional data mining tasks, new 
health-care-specific tasks will likely become important, 
such as record linkage or mining over ontology-based 
and semistructured data, for example, annotated im-
ages.

CONCLUSION

Privacy-preserving data mining emerged in response 
to two equally important (and seemingly disparate) 
needs: data analysis in order to deliver better services 
and ensuring the privacy rights of the data owners. 
Difficult as the task of addressing these needs may 
seem, several tangible efforts have been accomplished. 
In this article, an overview of the popular approaches 
for doing PPDM was presented, namely, suppression, 
randomization, cryptography, and summarization. The 
privacy guarantees, advantages, and disadvantages of 
each approach were stated in order to provide a bal-
anced view of the state of the art. Finally, the scenarios 
where PPDM may be used and some directions for 
future work were outlined.
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KEY TERMS

Data Mining: The process of automatically search-
ing large volumes of data for patterns.

De-Identification: Altering a data set to limit 
identity linkage.

Privacy: Individuals or groups’ right to control the 
flow of sensitive information about themselves.

Pseudorandom Generator: An algorithm that 
takes a short random seed and outputs a long sequence 
of bits that look independent random under a certain 
class of tests.

Randomization: The act of haphazardly perturbing 
data before disclosure.

Secure Multiparty Computation: A method for 
two or more parties to perform a joint computation 
without revealing their inputs.

Statistical Database: A database with social or 
economical data used for aggregate statistical analysis 
rather than for the retrieval of individual records.

Summarization: Transforming a data set into a 
short summary to allow statistical analysis while losing 
the individual records.

Suppression: Withholding information due to 
disclosure constraints.


