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Abstract. Link discovery is a process of identifying association(sjoag dif-
ferent entities included in a complex network structuree§ehassociation(s) may
represent any interaction among entities, for example é&tmpeople or even
bank accounts. The need for link discovery arises in maniicgtipns including
law enforcement, counter-terrorism, social network asialyintrusion detection,
and fraud detection. Given the sensitive nature of infoiomathat can be re-
vealed from link discovery, privacy is a major concern frdme perspective of
both individuals and organizations. For example, in theextrof financial fraud
detection, linking transactions may reveal sensitiverimi&@tion about other indi-
viduals not involved in any fraud. It is known that link disewsy can be done in
a privacy-preserving manner by securely finding the traresg@losure of a graph.
We propose two very efficient techniques to find the transitlosure securely.
The two protocols have varying levels of security and pentamce. We analyze
the performance and usability of the proposed approactrimstef both analyti-
cal and experimental results.
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1 Introduction

Link discovery is a process of identifying association(sjoag different entities in-
cluded in a complex network structure [1, 2]. These assiocigg) may represent any
interaction among entities, for example, between peopleven bank accounts. The
need for link discovery arises in many applications inahgdaw enforcement, counter-
terrorism, social network analysis, intrusion detectemg fraud detection.

Link discovery in these application domains often involaeslysis of huge vol-
umes of data distributed across different sources witkedkfit rules and regulations on
data sharing. For instance, law enforcement investigatidten involve finding links
between individuals or discovering association of indixts with specific organiza-
tions or groups [2]. To discover such links, information dee¢o be sifted through
various sources such as law enforcement databases, finkangactions, and phone
records, etc. The information stored in such data repasgds often confidential. Given
the sensitive nature of information that can be revealea fiok discovery, privacy is
a major concern for both individuals and organizations [3].
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In the past years, there has been increasing interest idogdéve techniques for
link discovery and analysis in network or graph structurathdl, 4—6]. However, none
of these works have considered privacy issues in a distiboontext while discover-
ing links among entities. Recent work by Duan et al. [7] firstgents a generalized
HITS algorithm to rank the linked entities on weighted grapley solve an orthogonal
problem to what we present in this paper. There has also lmeeeaising interest in
privacy-preserving data mining [8—10], some of which warlof interest.

Recently, He et al.[2] have proposed an approach for priyaegerving link dis-
covery in a complex and distributed network structure. 8jpadly, the entities in the
network structure are viewed as nodes in a graph with an edtyeebn two nodes
representing the association between the correspondiitggeenDifferent portions of
the graph (subgraphs) correspond to data repositoriescbiwelifferent parties. For
example, in the context of financial transactions, the gragdtes represent customer
accounts and the links represent the transaction amongiais;avhich may belong to
the same bank or different banks. Thus, the entire graplesepts the global view in-
cluding all information repositories. The problem of pdyapreserving link discovery
can then be reduced to finding the transitive closure of aiblised graph in a secure
manner. He et al.[2] further show that this can be done vidiarsptrix multiplication
protocol, which itself can be implemented using the congijetecure scalar product
protocol of Goethals et al.[11]. However, due to the requisrge number of costly
encryption / decryption operations, the approach is coatpmrtally quite prohibitive.

In this paper, we propose two different methods to improeecthmputational effi-
ciency of secure link discovery. The first method is basedammutative encryption.
This approach leaks a little more information (each partg ¢ know the final transi-
tive closure matrix involving their own vertices as well aga on when these connec-
tions are formed). However, it is significantly more effidiand practical. In the second
method, the secure transitive closure is computed over & smaller graph composed
of representative nodes heuristically selected. Instéaunctuding all of its nodes for
a complete secure transitive closure computation, eadly phooses a fraction of its
overall nodes as its representatives set to form its reprathee matrix, and the secure
transitive closure computed over it. The global transitiasure is then approximated
based on the representative transitive closure. Our erpets show the effectiveness
of our proposed approach.

2 Preliminaries and Problem Definition

In this paper, we consider a distributed environment wvkitparties P, . .., P;. The
overall distributed network data is modelled as a simpledaded grapld:(V, E), where
V is a set of nodes withl’| = n, andE C V x V is a set of directed edges. Each
party P, owns part of grapli7, denoted by (V;, E;), whereu,;V; = V, |V;| = m; with
Zle m; =n, V;NV; =03 # j), andU; E; C E. Note that some edges i may
cross the boundaries 6f; andG; (i # ;) with one node irG; and another node i@;.
These edges are called inter-edges.

Given two nodes, v in V we define the predicatelRPATH (U,V) as evaluating ta
if there exists a directed path betweeandwv, and otherwise evaluating o Given any
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two distinct nodes, v € V, we are interested in being able to check whether there is a
path fromu to v in the global grapldz no matter the subgraph in which the two nodes
andv reside. That is, we are interested in evaluating predicea®&rH (u, v) for every

pair of nodes:, v € V' in aprivacy-preservingnanner. In other words, we require that
the process of evaluating predicateRBATH should not reveal any additional informa-
tion to any party after the computation. EvaluatinRBATH in this setting leads to the
following definition of the RIVACY-PRESERVINGL INK DISCOVERY.

Problem 1. Consider directed grapf(V, E) split amongk partiesP;, ..., P as de-
scribed above. For every pair of nodes € V evaluate the value of predicatefPATH
(u,v) in G in a privacy-preserving manner.

We also require the following definitions:

Definition 1. Given partyP; that keeps grapltz;(V;, E;) we define theset of inter-
nodesV,(l) to be the union set of nodes that either start or end interesdg

In addition, we denot&] as the set union of all’l(i) (i=1,2,...,k).

Definition 2. Given anode: € V,, its inter-degreeD, (u) is defined as the total number
of edges which are eithér, v) € E or (v,u) € E, andv € Vl(”(z‘ # 7).

Definition 3. Given a node: € V;, its local-degreeD, (u) is defined as the total num-
ber of edges which are eithén, v) € E; or (v,u) € E;.

Definition 4. Given a node: € V;, its combined-degreB¢(u) is defined as the sum
of Dy(u) and Dy (u).

In addition, given a grapty = (V, E), its final full transitive closure is denoted by
TC. In our second proposed approach, we derive an approxingasitive closure of
G, denoted byI’C’. To assess the effectiveness of our proposed heuristioagprwe
also define two measures as follows.

Definition 5. The total accuracy is defined as the total number of matcheahehts
betweer'C' and T'C" divided byn? (that is, Ltelrumber of maiches) \where n is the
size of the adjacency matrix.

Definition 6. The edge accuracy is defined as the total number of matcheaeron
elements betweeRC' andT'C’ divided by the total number of non-zero elements (that

is total number of matched nonfzeTOS)
! total number of non—zeros

Note that, in the above definitions, matched elements mesdndlven a specified row

and column, the corresponding entries in the matricéB@fandT'C" have the same

value. The reason that we would like to include both totabiaacy and edge accuracy
as performance metrics is that, in the case of sparse graphlsaccuracy can be very
high while having low edge accuracy. In general, a high edgeracy is an indicator

of good performance. In the following, whenever accuraayéntioned, it means edge
accuracy unless otherwise stated.
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3 Overview of Secure Transitive Closure

In this section, we briefly provide an overview of secure $itive closure introduced in
[2]. For more details, we refer the readers to [2]. The tr@restlosure [12] of a graph
G = [V, E] is a graphG* = [V, E*| with edge(i,j) € E* if and only if there is a
path from vertex to vertexj in the graphG. A simple matrix multiplication method
can be used to compute the transitive closure of a graphréfpresents the adjacency
matrix of graph G, theml” represents the transitive closu#&, wheren is the number
of vertices inG.

To address the privacy concerns, the approach proposefiengbles secure com-
putation of the transitive closure of a distributed graptheiit requiring parties to re-
veal any details about their subgraphs. Specifically, tlidogol for secure transitive
closure computation is run by &l parties that own a portion of the distributed graph.
Let A®) denote the adjacency matrix corresponding to the subgfapk: (V;, E;)
owned by partyP;. A% is an x n matrix, where the matrix entrt()[p, q] = 1 if
the edgdp, ) € E;. All other entries in the matrixi() are set to zero. Therefore, the
overall adjacency matrid of the distributed graph is given byt = Zle AW,

The transitive closurel™ of the distributed graph is computed iteratively through
matrix multiplication, with the output of the last iteratiaused in this iteration . For
instance in theth iteration,(r < n), the matrixA2" is computed as follows:

k k
A = ATAT =) 00 oW (1)
i=1 j=1

The Split Matrix Multiplication Equation 1 used for computation of the transitive
closure involves pair wise multiplication of the outputisplatrices of each party. It is
obvious that each party; can locally comput®(? O, Therefore, the secure compu-
tation of A%” comes down to securely computi®”? O%) (Vi # j). Since the matrix
multiplication essentially is the scalar product openasi@” OU) can be computed
by invoking the secure scalar product protocol proposedif [

It is important to note that actual adjacency matrix of thatrithuted graph in each
iteration is never known completely to any party. Rathethasoutput of each iteration,
each partyP; gets a matrix)(?) consisting of random shares of the global adjacency
matrix. Thus, for any given row and columng (1 < p,q¢ < n), and iterationr,
S 0D (p,q) = A™(p,q). In the end, the values of the final matrik are split
randomly and returned to each party as matri@es, O, ..., 0%,

However,the above approach in [2] is computationally pogivie. With [ogan iter-
ations, the total number of encryptions and decryptionsired performed igk? — k) -
n? - logan, while the total number of exponentiations and multipiizas performed is
(k? — k) - n® - logan. Overall the encryption/decryption time dominates. Altgh the
split matrix multiplication approach requiréy(n?) encryption/decryptions, the com-
putational time for large distributed graphs will be sigrafitly high due to the high
computational cost of encryption/decryption.
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Algorithm 1 Efficient Secure Transitive Closure
Require: k parties,P, ..., Py, PartyP; hasm; vertices
Require: Letn = 3_F | m;, represent the total number of vertices
Require: Let the matrixA‘”(n x n) represent the local adjacency matrix of paRy(i.e., the
matrix entry AV [p, q] = 1 if the edge(p, ¢) € E;, otherwise0.)
1: for j < 1...[log, n] do

2. forp«—1...ndo
3: forg«<1...ndo
4: {AssumeP; owns vertexp}
5: At P;: Initiate boolean scalar product protocol described inohilnm 2 to get output
valuex
6: if x =0then
7 At P;: A9[p,q] — 0
8: else
9: AtP;: A9[p,q] —1
10: end if
11: end for
12:  end for
13: end for

4 A Commutative Encryption based Approach

In this section, we provide an alternative approach thas asenuch more efficient
protocol for the scalar product requiring relatively fevegrcryption/decryption oper-
ations. The protocol is depicted in Algorithm 1. This apmtoalso uses split matrix
multiplication for secure computation of the transitivestire matrix. However, it em-
ploys commutative encryption for computation of the scpladuct and works only if
boolean values are used. In other words, the split matrieasrgted in each iteration
of the split matrix multiplication needs to be convertedibbolean values. This will
result in leakage of additional information to the differ@arties. In particular, each
party will know the portion of the final transitive closure ma involving the party’s
own vertices. Additionally, each party will know in whickeration a zero value in its
local output matrix changes to a non-zero value. As a rethdtparty will know the
range on the number of links to which its local vertices anenamted to external ver-
tices. For example, if the matrix ent6*) [p, q] changes its value from zero to non-zero
in the 3rd iteration, then the shortest path between vereaxdq consists of at least 4
and at most 8 links. One way to reduce this leakage is to userdgpproach, where
the approach proposed in [2] is used for the first few iterstibefore switching to the
new approach.

4.1 Commutative Encryption based Scalar Product

With boolean vectors, it is possible to get a more efficiemtlaacproduct. To see
this, note that if we encode the vectors as sets (with posiiiambers as elements),
the scalar product is the same as the size of the intersesgitofror example, assume
we have vectotX = (1,0,0,1,1) andY = (0,1,0,1,0). Then the scalar product
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X Y = Zle x; * y;. Now, the corresponding set encodings &8 = (1,4,5)
andY' S = (2,4). Once can see that the size of the intersection8&t(\Y S| = 1 is
exactly the same as the scalar product. This idea is usedripute the scalar product.

The basic idea is to use commutative encryption to encryjpdfathe items in
each party’s set. Commutative encryption is an importaok tised in many crypto-
graphic protocols. An encryption algorithm is commutaiivine order of encryption
does not matter. Thus, for any two encryption kéys and £2, and any message,
E1(E2(m)) = E2(E1(m)). The same property applies to decryption as well — thus to
decrypt a message encrypted by two keys, it is sufficienttoygéit one key at a time.
The basic idea is for each source to encrypt its data set tgitkeys and pass the en-
crypted data set to the next source. This source again eést¢hgoreceived data using its
encryption keys and passes the encrypted data to the nexesautil all sources have
encrypted the data. Since we are using commutative enonyjikie encrypted values of
the set items across different data sets will be equal if artg ibtheir original values
are equal. Thus, all the intersection of the encrypted wadives the logical AND of the
vectors, and counting the size of the intersection set ghesotal number of 1s (i.e.,
the scalar product). The encryption prevents any party fkaowing the actual value
of any local item. This scalar product method only works foolean vectors, but it
will still work in this context, since after each iteratidmet non-zero values in the local
adjacency matrix are set to one by the party owning the cporeding data point.

In our case, for the scalar product, the first vector is owrmedpdetely by one party
while the second vector is split between all of the partigse Gan simply compute all
of the local scalar products to add up the sum to get the gkutadr product. However,
this creates a serious security problem. To see this, asthaha partyP;, owningm;
vertices, gets local scalar products from another pBytgwningm; vertices. Remem-
ber that each scalar product gives one linear equation inawks. Since party; owns
m; vertices, it getsn; linear equations imn; unknowns. Ifm; > m;, this will com-
pletely breach the security of parfy;. Thus, if there is even one party that has more
vertices than any of the other parties, it can completelpdinghe security of the other
parties. Since this situation is quite likely, local scgdavducts cannot be used.

Instead to ensure security, we must carry out the entiraispabduct in one go. To
do this securely, we must ensure that all of the vectors arg/pted and permuted by
all of the parties, thus ensuring that no linkage betweetovecan be done. Now, after
intersection a party can only learn the total scalar pro¢huamtany of its components).
Algorithm 2 gives the complete details. This still gives dnge linear equations — in
fact, it gives inm; linear equations im — m; unknowns. As long as:; is not more
than half of the total number of vertices, security is notlsteed. In most situations this
will be true and this protocol can be used. In cases wherdghist true, there is no
alternative to the first completely secure protocol.

4.2 Complexity Analysis

We now analytically show that this method is more efficiemtrtthe approach in [2].
Assume that denotes the total number of 1s in the global adjacency miatedpartic-
ular iteration. Further assume that these are splitdntbs for each row and 1s for

n /

each column. Thug,= "7 ; ¢;. Similarly,c = > | ¢

=1 "i"
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Algorithm 2 Commutative Encryption based Boolean Scalar Product

Require: k parties,P, ..., Py

Require: Party P, has input vectoX = {z1,...,z,}

Require: PartyP,..., P, each have input vecto®s; = {y1, ..., ym, }, wherem, represents
the number of vertices owned by each party, suchﬂjézt1 m; =n

Require: Assume thal” = [Y7 ... Yx]

Require: P, gets outpub suchthab = X - Y

Require: A global position encoding scheme

1: Each partyP; generates a private and public key fait;, pk;) for a commutative encryption

system.

2: P, converts its vectoX to the position seX S

3: Each partyP; converts its local vectaY; to the position seY’.S; based on the global encod-
ing scheme

4: fori=1...ndo

5. Py encrypts the position se{ S with its key E,, to get the encrypted vectd& X S

6: end for

7:forj=1...kdo

8:  Each PartyP; encrypts its local position s&f.S; with its key E,; to get the encrypted

position setE'Y’S;
9: end for

10: Each party passes its encrypted position set to the aext for encryption with its key until
all sets are encrypted by all parties

11: AtPy: EY S «— ¢

12: for j=k...2do

13: PartyP; merges its completely encrypted set with the global ened/etEY S, i.e.

EYS — EYSULEYS;

14:  PartyP; arbitrarily permuteY' S and sends it to party;—1

15: end for

16: At P: ReceiveEY S from P, and mergel’Y S, into it (i.e., EY S — EY SU EY S1)

17: P, intersects the completely encrypted &&X S with the complete encrypted s&tY’S to
get the outpub

In each iteration, for each point in the global adjacencyrixabne efficient com-
mutative encryption based scalar product is carried outsTfor rowp and columny,
the scalar product requires * k + c;, * k encryptions. Thus, the total cost of each iter-
ation can be given by summing the total number of iteratieqsiired for each row and
column. However, this assumes that we reencrypt for evemyamed column for each
scalar product, which is quite unnecessary. In realitg, tifficient to encrypt each row
and each column only once. The same encryptions can be useddeessive scalar
products without revealing any extra information. Thusalteost, TC is

n n

TC:Zcp*k—i-Zc;*k:chp—i-ch/q:kc+kc:2kc
p=1 q=1 p=1 q=1

In generalc can range betweemnandn?. Therefore, in the best casEC = 2kn,
while in the worst case[’C' = 2kn2. It is important to note that for large distributed
graphs typically the values efare asymptotically closer to the best case value rather
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than the worst case. For instance in the distributed grayimiy financial transactions
across different bank accounts, it is unlikely that a sirtghesaction can be linked
to all transactions or even a fraction of these. We can safetyyme that the number
of transactions that can be linked to a single transactidinalways be bounded by a
constant, i.e.¢ = O(n).

5 A Heuristic Approach based on Representative Selection

In this section, we present a heuristic approach to imprbeeefficiency of secure
computation for those situations where the commutativeygtion based approach
cannot be used. The basic idea is to have each party choa@ssiarirof its overall nodes
as its representatives set to form the representativexmatien, the secure transitive
closure is done only over the representative matrix. Thbajlransitive closure is now
inferred using the representative transitive closureh\&ismall representative matrix,
this clearly leads to significantly smaller computationtsoklowever, this pays a price
in accuracy. While the links between the representativeaaecarately discovered, for
the remaining nodes, the links may or may not be discoverddlevthere will be no
false positive (a link found where none exists), there casidpaificant false negatives,
based on how few representatives are chosen. Algorithmes ghe details.

We need to further discuss two issues — how are the repréisestahosen, and
how is the global transitive closure inferred from the reergative transitive closure.
We first discuss the second issue: Specifically, given anygiaiodes(u, v), where
u € V; andv € V(i # j), evaluate DRPATH (u, v). The following 3 cases may occur:

— bothwu andv are representatives: in this case, we can directly get theamfrom
the transitive closuré'r.

— one ofu andv is a representative: without loss of generality, we assimagutis a
representative. If we can find a nodewhich is a representative of the party who
ownsv and we also know there is a path franto ' and a path from’ to v based
on step 3 and step 1, respectively, then we say a path exagtafto v. Otherwise,
no path exists between them.

— neitheru nor v is a representative: If we can find a node(resp.v’) which is a
representative of the party who ownfesp.v) and we also know there is a path
from v to v’ and a path from’ to v based on step 1, as well as a path exists from
u' to v’ based on step 3, then we say a path exists fidmv. Otherwise, no path
exists between them.

Now, for the first question — how do we select the represemsto maximize accuracy
for a given level of efficiency.

Intuitively, the representatives should be chosen fromstiteof the inter-nodes in
each subgraph. This makes sense, since these are the orlyinedlved in any edges
with intra-edges. These are our only sources of cross-grdphmation. As we have
explained above, combining our cross-graph path infomnatiith the local paths in
each subgraph will help us to discover the path between ainyppaodes residing in
different subgraphs. Assuming that the inter-nodes isditma of total nodes, choosing
inter-nodes as representatives would easily reduce théreghsecure computations.
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If we include all the inter-nodes as representatives, akshiowe would get the exact
results of all path information.

In this paper, we employ a greedy heuristic to choose reptatees from within the
inter-nodes. The idea is to choose representative nodesigih degrees. The intuition
is that a node with higher degree should be involved in motiespand thus contribute
more information.

One natural and seemingly better selection criteria is t@teagreedy global se-
lection - we choose representatives with high degree in teeadl global graphG.
However, given that each party can only see its own subgthfghis not ideal, since it
would not address privacy concerns.

Instead, we take the approach of greedy local represeesat®lection. In a greedy
local selection, we choose the inter-nodes which have héginesk in each party’s local
subgraph. Again, three different kinds of degree could ke usinter-degree, local-
degree, and combined-degree (as we have defined in Sectiore2ch case, the corre-
sponding degree of each node is computed. Then, each paig kespecified percent-
age of its local nodes with highest degrees being its reptasees, which are used for
forming representative matrik. Algorithm 4 presents the details of this. As we show
in the experimental evaluation below, this works quite well

5.1 Experimental Evaluation

In this section we experimentally evaluate the effectiwsradf our proposed algorithms.
Synthetic random graphs are generated for the test datasést, random graphs are
widely used in the probabilistic method, where one triestvp the existence of graphs
with certain properties. The existence of a property on deangraph implies, via the
famous Szemeredi regularity lemma, the existence of thugtgaty on almost all graphs
[13].

Since we need to have sub-graphs making up a global graph, we use the igraph
packagé to generate a specific type of global gra@ki.e, Erdés-Renyi random graph).
Then, we uniformly at random choose a certain number of n@idgsa specified per-
centage of the total number of node}to induce each subgragh; and the corre-
sponding inter-edges between these subgraphs. In th&'&Rp) model, a graph is
constructed by connecting nodes randomly, wheisthe total number of nodes, apd
is the probability that each edge is included in the grapth tiie presence or absence
of any two distinct edges in the graph being independent. &vtion the global graph
G into 4 equal-size subgraphs, each of which is assumed to hediwy a party. This
partition also results in a number of inter-edges conngdtie subgraphs.

Figure 1 shows the accuracy results of the greedy localdgrglbal, and random
approaches with the representative rate goes from 10% upQ#1All the tests are
done on the Erd6s-Renyi graphs with the number of nede4.000 and probability
= 0.1%. In the results, lid, lld, and lcd to stand for the loicdr-degree, local local-
degree, and local combined-degree approach, respectivée global case, the global
inter-degree, global local-degree, global combined-geds denoted by gid, gld, and
gcd, respectively. The representative rate is the fracforpresentative nodes chosen

! http://cneurocvs.rmki.kfki.hu/igraph/
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Algorithm 3 Secure Representatives Approach
Require: k partiesP, ..., Py
Require: Let the matrix4¥ (n; x n;) represent the local adjacency matrix of paRy
Require: Let the matrix R(|Vr| x |Vr|) be the representative matrix (i.e., the matrix entry
Rlp,q) =1if pe V{”, g € V7, otherwisen.)
1: Each partyP; computes its local transitive closulé” with input matrix A®
2: Each partyP; engages in heuristically choosing representatives (Alyor4) to have the
matrix R
3: Each partyP; participates secure transitive closure computation desgtin Section 3 with
input matrix R to get transitive closur@’r
: Given a pair of node6u, v), whereu € V; andv € V;(i # j):
: if bothu andv are representatives.e.(u € VRfi) andv € VRfj))} then
DIRPATH(u,v) «— Tr(u,v)
: else ifone ofu andv is a representativéw.l.0.g assume that is the representative i.e.,
u e ViV andv ¢ V) then
8 if 3 € V) andTr(u,v') # 0 andT " (v',v) # 0 then

~Nou s

9: DIRPATH(u,v) «— 1
10: else

11: DIRPATH (u,v) < 0
12: endif

13: else

14:  {neither is a representative, i.a.¢ Vi" andv ¢ Vi}
15:  if 3u € ViV andI’ € Vi st T (u, u') # 0andT (v/, v) # 0andTr(u',v') # 0

then
16: DIRPATH (u, v) < 1
17: else
18: DIRPATH (u, v) < 0
19: endif
20: end if

21: return DIRPATH(u,v)

either locally or globally from the inter-nodes. Each agmtois run on the same graph,
and the results averaged over five runs (with different ggaph

Figure 1(a) shows that, in the greedy local case, both thébomd-degree and the
inter-degree approaches achieve a better accuracy thdocdledegree one, and the
combined-degree is slightly better than the inter-degrbae.greedy global approach in
figure 1(b) looks similar to the greedy local one. In additimnboth greedy local and
greedy global cases, the combined-degree has the bestmparice. Figure 1(c) com-
pares the global and local combined-degree with randomtsete Clearly, both global
and local approaches perform much better than the randorriMore importantly, we
can see that the greedy local combined-degree approacistairadorms the same as
the greedy global combined-degree. Hence, it demonstita¢®ur proposed greedy
local heuristics approach is promising.

While these results are preliminary, we have run more erpants varying other
parameters as well as the graph generation model. We dopwt teese due to space
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Algorithm 4 Choose Representatives using Heuristics (DegreeTypeefage): a
greedy local approach
Require: k parties P, . .
G(V,E)

Require: DegreeType: chosen from inter-degree, local-degree,mbowed-degree

Require: Percentage: representative rate as opposed to the totaenwfthe inter-nodeg Vi |)
1At R )

2: the representative s&ts; — ;")

3: for each node: € ;") do
4:  if DegreeType = inter-degrében
5: Count the inter-degreB; (u) of u
6
7
8
9

., Pr each holding subgraplt;(V;, E;) as parts of global graph

else ifDegreeType = local-degrében
Count the local-degreBy (u) of u

else
Count the combined-degrdec(u) of u
10: endif
11: end for

12: SortRS; in terms of the degree counts

13: Keep Percentagg# | of nodes with the highest degree Rf;

14: Each party participates the forming of the matRiusing RS; (Similar to the formation of
adjacency matriXi discussed in Section 2)

15: return R

limitations, but they are quite similar and show that therespntatives approach gives
a compelling tradeoff of accuracy for efficiency.

6 Concluding Remarks

In this paper, we have proposed two different approachespodve the efficiency for

privacy-preserving link discovery in a complex and disitéd network structure. The
first approach trades off security for efficiency, while tkeand trades off accuracy for
efficiency. Both of our approaches can reduce the prohéddmputational complexity
of the currently existing solution for secure link discoxer

60

Accuracy (%)

——lid
——lid 2

——qid

——gid
——ged

—+—led

10% 20% 30% 40% S0% 60% 70% 80% 90% 100%
Rep. Rate

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Rep. Rate

(a) greedy local approach

(b) greedy global approach

(c) comparison

Fig. 1. Local vs. global vs. random approaches
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In our future work, we will consider other features of inreuch as the degree of

closeness of the entities (i.e., number of common neighlborsber of distinct paths,
length of the shortest path, etc) for link discovery and wsial A more challenging
problem is to figure out the maximum flow from one entity to deot(the max flow

problem). This can be instrumental in computing the amofinésources transported
through multiple intermediaries which would be great iagtiin financial fraud detec-
tion.
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