

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08 October 19–23, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ACM 1-59593-XXX-X/0X/000X…$5.00.

Accessing The Deep Web:
When Good Ideas Go Bad

Alfredo Alba, Varun Bhagwan, Tyrone Grandison

650 Harry Road, San Jose, California 95120, USA

{aalba, vbhagwan, tyroneg} @us.ibm.com

Abstract

Prevailing wisdom assumes that there are well-defined, effective
and efficient methods for accessing Deep Web content. Unfor-
tunately, there are a host of technical and non-technical factors
that may call this assumption into question. In this paper, we
present the findings from work on a software system, which was
commissioned by the British Broadcasting Corporation (BBC).
The system requires stable and periodic extraction of Deep Web
content from a number of online data sources. The insight from
the project brings an important issue to the forefront and under-
scores the need for further research into access technology for
the Deep Web.

Categories and Subject Descriptors H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval –
Retrieval models

General Term Algorithms, Design, Reliability, Experimenta-
tion, Standardization.

Keywords Deep Web, access, crawling, application program-
ming interfaces

1. Introduction

The problem of accessing Deep Web content has many signifi-
cant issues yet to be solved, such as challenges with dynamic,
unlinked, private and non-html content. These concerns are
further exacerbated by the rapid growth of Deep Web content,
fueled by the success of social networking online, the prolifera-
tion of Web 2.0 content and the profitability of the companies
that steward in this new era. Business models, resource man-
agement strategies and long-term vision play a significant role in
driving technical directions and influencing access methods.

As technology products transition to relying on Deep Web
content, the gaps between reality and the assumed becomes
clearer. It then becomes apparent that the reliability and efficacy
of the established (or preferred) information retrieval techniques
are below expectation and require improvement.

In this paper, we discuss the lessons learned from an indus-
try-specific application deployment, the Sound Index, which
showcases a set of interesting issues that must be addressed.

2. Setting the Context

The Sound Index is a catalogue of the most popular artists and
tracks that are currently being talked about on the Internet. It
incorporates listens, plays, downloads, sales and comments from
a multitude of online communities and social networks.

The Sound Index system can be divided into four distinct
phases [1]. The first phase is ingestion, which is the act of gath-
ering relevant unstructured and structured content from various
websites such as MySpace, LastFM, YouTube, iTunes, Google
Groups and Bebo. Ingest occurs every six hours and each run
consists of tens to hundreds of millions of entries. Once gath-
ered, the content is analyzed and transformed into a standard
schema. When this is completed, the now structured content is
stored in a database. Finally, music charts are created by apply-
ing relevant ordering schemes. The end result is the top 1000
artists and tracks with the highest online buzz. Interested readers
may investigate the Sound Index further at
http://bbc.co.uk/soundindex/.

To facilitate ingestion, the system utilizes screen scrapers,
application programming interfaces (APIs) and RSS feeds. Dur-
ing the pilot phase of the project, the anomalies exhibited in
accessing some of the Deep Web content repositories showcased
very interesting phenomena and emphasized a pressing (aca-
demic and industry) problem that must be fixed.

In this paper, we use two exemplar data sources, YouTube
and Last.FM, (without loss of generality) to demonstrate our
findings. YouTube is a video-sharing website that allows users
to upload, view, and comment on videos. Last.FM is an online
radio station and music community website. Each source can be
accessed via a myriad of different Deep Web retrieval technol-
ogy.

3. Screen Scrapers

Screen scraping is the practice of reading text data from a com-
puter's screen [2]. By analogy, screen scraping has also become
synonymous with automated parsing of the source text used to
render web pages. In all cases, the screen scraper has to be able
to not only process the text data of interest, but also to recognize
and discard any unwanted data, such as images and display for-
matting.

Deep Web source data is usually behind dynamic content
pages, web forms, AJAX-capable web pages, etc. These ren-
dered pages are visually and aesthetically pleasing but in order
to accomplish this, their source usually contains complex
(X)HTML, accompanied by cascade style sheets, JavaScript,
and even ActiveX components, amongst many other technolo-
gies. For instance, below is a snippet of source code from a
YouTube video page, which exhibits a number of features
clearly associated with dynamic page content, such as an em-

bedded JavaScript-driven AJAX call for displaying comments,
bolded below:

As shown above, the precious data lies within a plethora of
components, text, source code, markups, styles and tags. In or-
der to extract any data, all superfluous UI-related content must
be carefully filtered out and only the interesting data preserved.
Also, all semantically relevant information contained in the
page’s text needs to be extracted too.

3.1 When To Use Screen Scrapers

For some companies, their web sites are driven by quality of
service, accuracy, appeal, accessibility, availability, and other
user-focused issues. They have not only made the accuracy of
their site a top priority but also maintain and improve the site
continuously. They also deem it important to increase the site’s
appeal by continuously modernizing its look and feel, increasing
its accessibility, performance, and availability. For all these
reasons, the web page rendered data is considered to be the ul-
timate truth for these companies; therefore becoming the de-
facto source for current and accurate data.

3.2 Concerns with Screen Scrapers

While screen scraping is very useful, and the rendered web page
is the most likely repository for the most accurate and up to date
data available, screen scrapers can fail to provide data – or
worse, provide imprecise or erroneous data – when there are any
changes to the site’s source code. These changes can be minor
(removing a typo from a function name), or major (moving to a
different layout).

The user interface paradigms also shift rapidly, more so than
ever before. With the advent of increasingly flexible and scal-
able frameworks that enable the entire UI of high volume web
sites to be revamped overnight, the site owners and developers
are empowered to keep up with consumer demands of faster
paced feature availability. For example, code re-factoring, which
is supported by commercial development tools used by web-
based companies, is often used and leads to changes to the ac-
tual structure of the rendered content within a given site. All of
these activities are very beneficial for the user experience but
they often imply that any given rendered page may change radi-
cally from one day to the next; including the page’s location and
even the semantics of the data that one is interested in.

3.3 Our Observations About Screen Scrapers

The YouTube UI is the most accurate source for data on You-
Tube activity, not only in terms of availability, but in terms of
accessibility. As long as the crawl does not deviate too far from
normal user navigation patterns, data such as user comments,
views, comment counts, etc. are consistent and accessible. It
should be noted that comments retrieval, in particular, presents
interesting challenges. For instance, the “View all comments”
link changes the ordering from reverse chronological to chrono-
logical, and it still has the potential to produce more than a sin-
gle rendered page containing all available comments, e.g.
Britney Spears’ Gimme More video (id: m3ceCMpPJgc) has
over one hundred thousand comments, and produces multiple
pages even when “View all comments” is clicked. The multiple
pages that normally summarize comment activity need to be
navigated to achieve complete extraction. This fact means that
additional logic has to be included in the crawler to consistently
find the latest comments for a video.

Last.FM tracks scrobbles or user-listens, of individual music
tracks. They also provide total listeners (referred to as reach) on
a per-track, per-album, and per-artist basis, as well as user com-
ments at every level. During the course of this project, scrobbles
have manifested behavior that calls into question their reliability
and sensitivity to gaming. However, the number of unique lis-
teners appears more consistent. The data gathered via the screen
scraper for Last.FM is up to date, and in-line with current user
behavior.

4. Application Programming Interfaces (APIs)

Web Services (WS) technology, along with Web 2.0 tooling,
have encouraged Internet-based products to provide APIs for the
development community, which are suitable for automated agent
consumption and programmatic access. Today, there are an in-
creasingly large number of web APIs, e.g. Google’s AdSense
API, the Amazon’s eCommerce API, or the FaceBook API, etc.

The data that these APIs provide access to has tremendous
value. They also have the added benefit of being structured
enough to be machine consumable with superb resiliency to user
interface paradigm shifts, improvements, re-designs, etc.

4.1 When To Use APIs

With APIs, the fundamental data transport structures can remain
consistent over time as the User Interfaces evolve in exciting
and new directions, and the data is continuously consumed by
the internet community and any automated agents that harvest it.
Additionally, APIs make it possible for clients to get access to
functional and aggregate data, which perhaps is not immediately
available from the UI. Finally, APIs allow for targeted retrieval
of data – a client can fetch only a specific data element rather
than, say, a complete web page.
 The rising popularity of mashups [3], i.e. the practice of
combining data from multiple sources to create a new service
not provided by any of the individual constituents, has made the
Web API even more prominent. The benefit to User Interfaces is
clear, as they effectively isolate the data access layer from the
presentation layer; hiding the complexities of the backend sys-
tems. The case for APIs is further bolstered by the fact that they
are also suitable for consumption by UI frameworks, which
facilitates the easy creation of value-added ecosystems. While
the internal APIs, which UI APIs are built upon, may be much
richer than the publicly available interfaces, current architec-
tures allow for consistent data access throughout the software
stack.

<form action="" name="comments_filter">

Show:

<select class="xsmallText" name="commentthreshold" on-

Change="showLoading('recent_comments',

this.value);getUrlXMLResponseAndFillDiv('/watch_ajax?v=5K

x2nJGIdcc&savethresh-

old=yes&action_get_comments=1&p=1&page_s

ize=10&commentthreshold='+this.value, 're-

cent_comments');">

<option value="-1000">all comments</option>

<option value="10">excellent (+10 or better)</option>

<option value="5">great (+5 or better)</option>

<option value="0">good (0 or better)</option>

<option selected="selected" value="-5">average (-5 or bet-

ter)</option>

<option value="-10">poor (-10 or better)</option>

</select>

4.2 Our Observations About APIs

APIs are very valuable but do not always exhibit reliable and
consistent behavior. Poor documentation and quirky functional-
ity implementations often make it difficult to take full advantage
of these valuable and easy to use tools.

4.2.1 YouTube

In an effort to empower society at large and industries in par-
ticular, YouTube extended their API’s to provide data extraction
capabilities. However, this commendable effort came with con-
straints. For example, the API allows fetching of a maximum of
1000 comments for a video, and provides only lifetime aggre-
gates of views. Also, comments are only listed in chronological
order, which when coupled with the 1000-comment limit makes
retrieval of recent comments, from the more spiritedly discussed
videos, very difficult. The YouTube API also exhibited odd
behavior when asked to return comments for a video with over a
thousand comments - random (unrelated) comments were re-
turned.
 Ingesting views data for videos via APIs also proved to be
challenging. Based on the data shown on the website, the system
has the ability to track daily, weekly and all time views. How-
ever, the API only provides lifetime totals. A more detailed dis-
cussion on the implications of the shortcomings of APIs follows
in section 5.

4.2.2 LastFM

The API provided by LastFM provided extremely useful data,
but also proved to be challenging at multiple levels. Our first
observation was that the value of reach for tracks, albums and
artists sent through their API was rarely consistent with the
value displayed on their web pages. Our conjecture was that this
was due to caching (for performance reasons). Secondly, the
semantics of reach was purported to be all-time number and
then a 6-month rolling count. Our empirical evidence points to
the latter. Thirdly, was the inconsistency within the API, where
the reach value for a given track in one album was close, but not
quite the same as the reach value for the same track in another
album. As an example, take the artist Daft Punk’s track Some-
thing About Us, the API sent the following data:

 Album Reach

“Discovery “ 113957

“Discovery” 116571

“Musique Vol 1 (1993 - 2005)” 116571

“Musique Vol.1 1993 – 2005” 116571

Our fourth observation was that there was no specified update
interval or period for the API numbers. Finally, minor spelling
differences and or mistakes in the data exposed another interest-
ing concern. For example, for the same artist, we have:

Album Track Reach

“Discovery” Superhereos 2904

“Discovery “ Superheroes 95411

5. The Way Things Are

There are factors above and beyond the realm of technology that
are having strong influences on the ways that the Deep Web is
accessed.

We observed that the primary revenue generator for the
business tends to be the platform with the most accurate and up-
to-date data. For some businesses, their web interface is where
the bulk of their money is made and APIs are viewed as useful

add-ons that are paid little attention. For other firms, their busi-
ness ecosystem provides the lion share of their earnings and
their life blood hinges on the APIs they provide members in this
community. For these companies, their user interfaces are im-
portant, but are often second class citizens.

The impact of this phenomenon is 1) there often tends to be
a mismatch or incompatibility between the functionality offered
by companies that support both screen scrapers and APIs (i.e.
there is a feature reduction or degradation for the technology not
considered vital for the business), and 2) there is often a lack of
technical rigor applied to the second class citizen (e.g. data
cleansing and consistency checking techniques would easily
increase the functionality of these secondary technologies),
which ultimately leads to their demise and or obsolescence.

Given a company’s appreciation of scare resource allocation
and market targeting, and also the requirement of today’s user to
have multiple open channels, this is an opportunity for research-
ers to investigate methods for deploying adaptable, reliable sec-
ond class technology in some sort of staged manner, such that
all access avenues are usable, which is currently not the case.

5.1 APIs vs. Screen Scrapers

User Interfaces are considered accurate, coherent and function-
ally rich. However, it is their feature richness and their need to
change (frequently) that makes them especially challenging for
automated agents to interact with them.

APIs are convenient, structured and increasingly more avail-
able. However, their current accuracy and general coherence
leave a lot to be desired.

Feature Screen Scraper API

Accurate Yes No

Ease of consumption by

automated agent

Complex Simple

Semantically coherent Yes No

Affected by the evolution of

site functionality

Yes Not nearly as

much

Affected by User Interface

paradigm shifts

Yes No

The table above provides a succinct summary of our findings.
The table does not capture the facts that in terms of the time and
support efforts required, access response times and time to react
the pre-announcement of changes, APIs are superior to screen
scrapers. In an ideal world, both of these methods may be inter-
changeably used, without any loss of any kind. Unfortunately,
this is not the current state of affairs.

5.2 Summary

In the current Web environment, there are a lot more companies
that make the bulk of their money based on Web Interfaces.
Thus, presently screen scrapers work better than APIs because:
1. The popularity, and hence the revenues, of websites are de-

pendent on what the data users see on the site’s web pages.
2. Websites are extremely motivated to ensure correctness,

accuracy, and consistency on the web pages shown to the
end user.

3. Websites do not accord the same level of significance to the
data delivered by the APIs.

The examples in section 4.2 illustrate that APIs don’t work the
way they should. As the problem of providing a reliable and
robust API is one facing larger firms (with resources to handle
this concern), then it is reasonable to assume that mid-tier and
smaller companies have similar issues.

The message that keeps being repeated during implementa-
tion of the Sound Index project (and that is evident from the
above examples) is that currently screen scrapers are the Deep
Web access technology of choice, in spite of their susceptibility
to UI changes.

However, the present trend is for most companies to provide
APIs (as standard practice and operation) and while everyone is
trying to do better, the effort to make them truly useful will take
time. Also, as the Web evolves, the user interfaces will become
more complex and sophisticated, e.g. 3D interfaces, and will
require more frequent updates to appeal to the target audience.

Our position is that given the current inconsistency between
APIs and screen scrapers, the fact that screen scrapers currently
outperform APIs where it matters – providing reliable data – and
that all the indicators signal the demise of screen scrapers, there
is an opportunity for computer science research to lead the way
in finding a long-term solution that allows all Deep Web access
technologies to co-exist, be consistent and be well-thought of
with regards to the implications on areas such as privacy poli-
cies to actual site asset protection.

6. Related Work

Utilization of the Deep Web is currently the foundation of many
emerging Internet applications. We will describe the impact of
our findings on several categories of these applications and
briefly describe existing example applications in the category.
The emphasis in this section is on APIs, as many practitioners
do not use screen scraping and view it as past its prime.

6.1 Mashups

The full impact of limited and buggy APIs on the mashup econ-
omy is yet to be fully realized. The effects could range from
skyrocketing maintenance costs of screen scrapers (to keep the
essential data accurate and up to date) to the loss of valuable
time spent evaluating the feasibility of using APIs, whose func-
tionality currently falls short of their promises and expectations.

An example of a simple and relatively successful mashup is
housingmaps [4], which leverages Google Maps and Craigslist
to enable users to visually search for housing, via dynamic over-
lays of Craigslist home listings on Google Maps. Another good
example is LivePlasma [5], a visually rich application that com-
bines the Amazon API to show the relationship between movies,
artists, actors, etc. Using this mashup you can go straight from
interacting with the system to making purchases. Both demon-
strate the success of mashups in environments where the parent
companies have a vested interest in ecosystem building.

6.2 Collaboration Software

Collaboration tools and applications can greatly benefit from
APIs, as well as the social communities that interact and share
data through them. In this particular case, the scalability and
reliability of the APIs will play a fundamental role in the effec-
tiveness of the operational and business models.

Co-Scripter [6] is an example of a system for capturing, shar-
ing, and automating tasks on the Web. Co-Scripter scripts con-
tain human-readable instructions for completing Web-based
processes, such as changing your mailing address or searching
for real estate.

6.3 ScrAPIs

The term ScrAPI is a combination of the words “screen-scraper”
and “API”, and was coined by Paul Bausch in 2002 [7]. As the
name suggests, ScrAPIs originally came about to support web-

sites that did not provide an API but whose content was consid-
ered useful enough to be used in multiple applications [8]. In the
face of sites with misbehaving APIs but accurate UIs, ScrAPIs
present an interesting direction and opportunity by harnessing
the data using screen-scrapers while enjoying the traditional
benefits of APIs. However, ScrAPIs suffer from the same issues
as screen scrapers and remain untenable in future.

6.4 Other

Industry wide business intelligence, compliance applications,
and special interest communities are only a few of the examples
of applications and social groups that would greatly benefit from
rich, accurate APIs aimed at surfacing deep web data. It is also
worth mentioning that these APIs are very likely to speed up the
evolution of the current internet business models by enriching
the current ecosystems in which they evolve and facilitating
interaction and integration among entities.

7. Conclusion

Without question, the most accurate data is found today at the
glass. Thus, screen scrapers remain the ultimate source of Deep
Web data harvesting. This is due to the fact that the popularity,
traffic volumes, and revenues of these web sites are driven by
the content the data users see.

API data is today not nearly as functionally complete, let
alone semantically coherent, as user interface data is. APIs in
other contexts, such as shrink wrapped products, do have the
traits of being accurate and as semantically coherent as their
corresponding user interfaces. Unfortunately this is not the case
today on the Web.

As more systems move toward leveraging their partners and
ecosystem building becomes more dominant, technical ways to
strengthen and deploy APIs (and other emerging Deep Web
access technology) to provide data of the quality that screen
scrapers can produce (without the volatility present due to UI
changes) will become critical to the survival of the next set of
Web applications.

Acknowledgments

We would like to thank the BBC, specifically Geoff Goodwin
(Head of BBC Switch) for their support and encouragement.
Without the efforts of Daniel Gruhl, Anna Liu and Jan Pieper,
the systems development and subsequent analysis would not
have been possible.

References

[1] Varun Bhagwan, Tyrone Grandison, Daniel Gruhl. “Sound Index –
Charts For The People, By The People”. To appear in Communica-
tions of the ACM, 2008.

[2] From Wikipedia, http://en.wikipedia.org/wiki/Screen_scraping

[3] Paul Gil. “What exactly is a Mashup?”.
http://netforbeginners.about.com/od/m/f/whatismashup.htm

[4] Google. Housing Maps, http://www.housingmaps.com

[5] LivePlasma, http://www.liveplasma.com

[6] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M.
Haber, Eser Kandogan. “Koala: Capture, Share, Automate, Person-
alize Business Processes on the Web.” CHI 2007 Proceedings

[7] Paul Bausch. “Rambling about APIs”.
http://www.onfocus.com/2002/04/2717

[8] John Musser. “scrAPIs”.
http://blog.programmableweb.com/2006/03/21/scrapis/

