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Abstract: In this paper we provide tamper proof mechanisms for auditing old log entries as a part of 

lineage provenance within the virtual machine (VM) environment. For each VM provenance log record 

we apply SHA1 hash checksums, all encapsulated as huffman compressed codes to enforce log 

preservation against tampering. Our contribution establishes new formal definitions for the VM log 

provenance. Additionally we have performed base line experimental case studies of how we have 

started to corroborate these prescribed concerns. For example the significance of using compression, 

demonstrates the ability of our virtual machine(VM) log auditor disk to  preserve the aging log entries 

for 33% longer than before on the existing VM  disk host.  We believe these considerations within our 

research are useful for both the digital investigator and the system administrator who have the arduous 

tasks for managing the security of these new logical perimeters. This work is motivated by the   

ongoing work of the authors to demonstrate new security and forensic models for managing log data 

clouds.   
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1. INTRODUCTION 
 

Database provenance chronicles the history of 

updates and modifications to data and has received 

much attention due to its role in scientific data 

management. Many data security administrators would 

argue that its acceptance however requires a leap of 

faith. However the use of  provenance information in of  

itself offers  little protection to database records as they  

are  susceptible to accidental  data  corruption, 

malicious forgery, a set of problems is often prevalent 

in loosely coupled environments like the nefarious VM 

data clouds we have today.                                                                                                                                                                                                        

We provide in this paper a tamper proof 

mechanism for providing provenance to the VM log 

data running on the physical host operating systems as 

one technique for providing enforceable audit trails and 

by extension security within the VM system 

administered environment. We propose a checksum 

compression based approach, which is well suited to the 
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problem of database provenance, including non linear 

provenance objects and provenance associated with 

multiple fine granularities for the virtual machine 

hypervisor kernel log data. We apply this work in the 

context of our software prototype-: which is a virtual 

machine log auditor that profiles and manage the VM 

application identities, events, states and processes, 

within the this abstract domain. We demonstrate that 

the proposed solution satisfies a set of desirable security 

properties, and that the additional time incurred by the 

checksum approach is manageable, and a feasible 

approach in practice for auditing virtual machine log 

entries.     

 

2. RELATED WORK 

 

Provenance describes the history of creation and 

modification of data. Problems of recording, storing 

and querying provenance information are increasingly 

important in data intensive scientific environments, 

where the value of the data is tied to the method of  

creation of  this data in the first place, and  by whom 

(Annis et.al, 2002) . In the decentralized and multi-user 

environments, we observe that individuals who obtain 

and use data, do so at that their own risk. They need to 

trust that the provenance information associated with 

the data accurately reflects the process by which it was 

created and refined, but we explore the Cloud trust 

formalisms in a separate paper. Unfortunately this very 

data is subject to forgery and data corruption from 

disparate sources albeit accidental or willful. To this 

point, integrity has not been a well addressed solution 

by database provenance. While recent work in the 

context of file systems exists, the proposed solutions 

are not applicable to databases within a virtual machine 

cloud. In particular (Hassan et.al, 2009) only 

considered provenance as a total ordered chain of 

events on an atomic object (i.e. a file). Traditionally, for 

databases, provenance is treated as a set of partial 

ordered events on a set of compound objects (e.g. 

records, tables or even a whole database).    

Throughout the paper, we consider an abstract set 

of VM participants (users, processes, transactions etc.) 

that contribute to one or  more data objects through 

insertions, deletions, updates, aggregations. Information 

about  these modifications is  collected  and  stored in  

the form of  a  synchronized  logical provenance  record  

as  the  basis  of  qualifying  an  auditable log entry of 

an aging  VM record.  Various  system  architectures 

have  been  proposed by (Bhagwat et.al, 2004) and 

(Buneman et.al,2007) for  collecting  and  maintaining 

provenance records, from attaching provenance  to  the  

data itself as a form of annotation to depositing  

provenance in one or more repositories . Thus, one of 

our chief goals is to develop a cross platform solution 

for enabling tamper resistant provenance for security of 

logs for our synchronized virtual machine log database 

schemas. We recognize that it is pointless that since 

data is collected and shared in a decentralized and 

loosely coupled manner, it is  impractical to use secure 

logging tools like that of our virtual machine log 

auditor that  rely, for example on trusted hardware  or 

other system level assumptions about secure operations.                                                                                          

Occasionally,  a  data  recipient  will  request  and  

obtain  one  or  more  of  these  data  objects. In  

keeping  with  the  vision  of  using  provenance  in  the  

first  place,  each  database  log  object  running  on  the  

auditor’s  back  end  database is  accompanied by  a  

provenance  object.   We  seek  to  establish  this  by  

providing  basic  cryptographic  proofs  and  well  

founded  assumptions  to  the  System administrator that  

the  provenance  object  has  not  been  maliciously 

altered  or  forged.  The  closest  work  to  ours  is  that  

described (Hassan et.al,2009) which  focused on 

security problems (integrity and confidentiality) that  

arise  when tracking and  storing  provenance in a  file  

system . While our work utilizes a similar  threat  model 

and  integrity  checksum approach, we must  deal with  

a  significantly more complicated VM data  model (i.e. 

compound VM data  objects) and provenance model in 

order to apply these  techniques  in  a  database  setting.             

A recent vision paper by (Miklau et.al,2005)   

considered  the  problem of  data authenticity on  the  

web, and  described   a  pair  of  operations (signature 

and citation) for  tracking  the  authenticity  of  derived  

data. One of the main differences between that work 

and our work is the structure of participants’ 

transformations. The previous work assumed that 

transformations were structured in a limited way 

(specifically, as conjunctive queries), whereas we 

consider a more dynamic scenario of VMs in an 

arbitrary black box of such transformations.    The 

general problem of logging and auditing for cloud 

databases has become increasingly important in recent 

years. Research  in  this area  has  focused on  

developing  queryable VM audit logs  and  tamper  

evident  logging  techniques like those discussed in the 

papers by (Snodgrass et.al,2004)and (Tan et.al,2006).  

In addition, there  has  been considerable  recent  

interest in developing  authenticated data  structures to  

verify the  integrity of query results in dictionaries, 

outsourced databases, and third party data publishing  

as discussed in papers like those of (Devanbu et.al, 

2000), (Frew et.al,2008), and (Foster et.al,2002). 



 

3 

Finally, the provenance community has begun to think 

about security issues surrounding provenance records 

and annotations. Authors like (Braun et.al, 2008) and 

(Tan et.al, 2006) motivate the need for understanding 

the complications in provenance systems. Several 

systems have implemented a provenance system to 

protect information from unauthorized access: for 

provenance in a service oriented environment (SOA); 

and for annotations. The Cloud computing community 

which happens to be a more recently introduced 

community within the SOA environment is like other 

groups seeking to find secure methods of releasing 

information. For an abstract domain as the virtual 

machine cloud this is a challenging problem.            

   

3. CONTRIBUTIONS AND PAPER 

OVERVIEW 

 

This is the first study as far as the literature 

reveals on the integrity and  tamper proof mechanisms 

provided for database provenance within the compute 

cloud  environment. While related work has focused on 

security (integrity and confidentiality) for file system 

provenance, we extend the prior work in the following 

important ways:    

Non Linear Provenance for virtualized log 

databases - Database operations often involve the 

integration and aggregation of objects. One might  

consider  treating an  object  produced  in  this  way  as  

if  it  were new (with no  history), but  this  discards the  

history  of  the  objects  taken  as  input to  the  

aggregation. Thus, in databases it is common to model 

provenance in terms of data aggregation (DAG) or non-

linear provenance.   

Compound VM  log  objects -  In  a  virtualized  

database, it  is  critical  to  think of  provenance  

associated with multiple granularities of  data, rather  

than  to simply associate  provenance with  atomic  

objects. For example, in  the  relational data model, 

each  table, row,  and  cell  has  associated  provenance,  

and  the provenance  of  these  objects  are  inter-

related.     

The  remainder  of  this  paper  is  organized  as  

follows:  In  Section 4, we  lay  the  ground work  by  

describing the  database  provenance  model  and  

integrity  threat model  for   a   virtual machine  log  

auditing  environment.  We  then present  tamper  proof  

provenance  techniques for  an  atomic  and  compound  

VM  logic  object.(i.e. Section 5).  In Section 6, we 

provide the type of VM threat model that impacts the 

provenance arguments from Section 5.In Section 7 and 

8 we present the cryptographic basics of our arguments. 

In Section 9 and 10, and 11 we present the proof of 

concept experiment. And finally in Section 12 we 

provide the conclusion and future work. 

 

 

4. PRELIMINARIES 

 

We begin with the preliminary building blocks of our 

work, which include the basic VM provenance model 

and integrity model. As a short precursor definition, the 

VM data clouds is predicated on the service oriented 

architecture design principle of providing IT resources 

as an on demand, elastic service to end users (Mell 

et.al., 2009).The VM data cloud supports three (3) 

deployment layers of service namely-: Software as a 

Service (SAAS), Infrastructure as a Service (IAAS), 

and Platform as a Service (PAAS). Both the IAAS and 

PAAS are system layer services, while SAAS is an 

application layer service within the virtualization stack. 

In our work for log audit provenance, we focus at the 

PAAS system layer of this virtualization stack, since we 

handle the error, system, and application logs stored on 

the hypervisor kernel.  Throughout this paper, we will 

consider a VM log system database D, consisting of a 

set of VM log data objects. Each VM object has a 

unique identifier, which we will denote using a capital 

letter, and a value. We will use the notation A.val to 

refer to the current value of a VM log object A. Our log 

auditor’s database supports the following common 

operations:    

 

- Insert (A,val):  Add  a  new  object  A to  D   

        with initial value  val .    

- Delete (A): Remove an existing object A from 

D.   

- Update (A, val1): Update the  value of  A  to   

        the new   value val1  

- Aggregate ({A1 ……..An  },B); Combine  

        objects A1 ……..An  to form a  new  object  B. 

 

5. VIRTUAL MACHINE LOG 

PROVENANCE MODEL 

 

In this section we formally define the intuitive 

definitions for the virtual machine log provenance. Log 

provenance describes the relationship between the 

result of a transformation and the inputs that 

contributed to it. In a relational setting, this is usually 

interpreted as the input tuples of some VM hypervisor 

log query q that contributed to an output tuple t of q.  In 

our study to date there is still no evidence where log 
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provenance for the VM environment has any sufficient 

use cases that address its application. For this reason 

our approach is still subject to an enterprise 

implementation of these concerns. Notwithstanding a 

conceptual design outlook should provide initial 

specification models for which we could seek to assess 

the implementations. We adopt our ideas based on 

existing techniques used within the PI-CS (Perm 

influence Contribution Semantics) and Lineage CS 

literature for applying data provenance.     

We scale these contribution semantic definitions 

to define new ones for the hybrid virtual machine 

environment. For the purposes of this work we refer to 

such contribution as VM- LCS (virtual machine log 

contribution semantic). Let’s assume that  the VM-LCS  

models  the provenance of a result tuple t of  a query q 

as a list W (q,t) = <Q* 1 …….Q* n >  of  subsets  Q* i   of  

the  inputs  Qi of  the query(where the inputs  could  be  

base  relations or  the  result  of  other  log queries) that 

contribute  to  t. One should not seek to model 

provenance as an  independent  set  of  tuples  as  it  has  

the  distinct  disadvantage that  the  information  about  

which  input tuples  were  combined to  produce  a 

result  is  not at  all  modeled. In other words input tuple 

correlation is critical and complicit within our VM-

LCS.  Hence  to  explicitly  model  which  tuples  were  

used  together in  the  creation  of  an  output  tuple, we  

consider  the  provenance representation  from a  list of   

subsets of  the  input relations  to  a  set  of  log witness 

list.  Thus a log witness list w is an element from <Q 1 

x…..x Q n > with Qi  =   Qi   U .  Thus  a  log 

witness list  w  contains  a  tuple  from each  input of  

an  operator or  the  special  value  .  The value    

indicates that no tuple from an input relation belongs to 

the log witness list. This  is  particular  useful  if  we  

consider the  relational algebra implication, in that one 

can model  outer joins and  unions which are both 

important in the integration  of  the VM log data  

sources and  targets. Each  log  witness  list  represents  

a  combination of  input  relation  tuples  that  were  

used  together  to  derive a  tuple. We can now represent 

this contribution as a formal definition 

Definition 1: (VM-LCS provenance). For an 

algebra log operator  op with inputs Q1 ……….Qn , and 

a tuple t  op(Q1 …….Qn ) a set P(op,t)  W = (Q 1 

x…..x Q n  ) where Qi  = Qi  U .is the VM-LCS  of  t  

if  it  fulfills the following  conditions:    

 

(1)   op(P(op,t)) = {t} 

(2)   wP(op,t) :op(w)0 

(3)   P1  W : P1   P (op,t)   P1  ╞ (1),(2),(4) 

(4)   w,w1      P(op,t) : w  w1   wP(op,t) 

The first condition (1) in the Definition 1 checks 

that the provenance produces exactly t and nothing else 

by computing the result of the operator op over the 

provenance.  The second condition (2) guarantees that 

each log witness list w (combination of tuples) in P 

contributes something to t (removes false positives). 

The third condition (3) checks that P is the maximal set 

with these properties, meaning that no witness lists that 

contribute to t are left out. The provenance of a VM log 

query is computed recursively applying Definition 1 to 

each operator of the query. The fourth condition (4) is 

necessary to produce precise provenance for outer joins 

and set union. This  condition  states  that  we will  

exclude  a  witness list  w from  the  provenance, if  

there  is  a smaller  witness list w1    in  the  provenance 

that  subsumes  w.   A  witness  list  w is  subsumed  by  

a  witness  list w1    (denoted by : w  w1   )  iff  w1      can 

be  derived  from  w by  replacing  some  input  tuples  

from  w  with .                      

The second formalism which we’ll discuss is 

transformation provenance. We model the parts of 

transformation provenance that contribute to an output 

tuple. In contrast to traditional data provenance, 

transformation provenance is operator centric. In 

retrospect one could say that transformation provenance 

is similar to approaches in workflow management 

systems. We articulate the VM log transformation 

provenance as transformation q using an annotated 

algebra tree for q. For an output  tuple t and  a  witness  

list  w in  the  data  provenance of t, the transformation  

provenance  will  include 1 and 0  annotations on  the 

operators of  the  transformation q. A 1 indicates this 

operator on w influences t, a 0 indicates it doesn’t.   

Definition 2: (Annotated Algebra tree). An  

annotated algebra  tree for  a  VM log  transformation q  

is  a pair (Treeq  ,  )  where  Treeq   = (V,E) is  a  tree  

that  contains  a  VM log node for  each  algebra 

operator used  in  q (including  the  base relations  as  

leaves) and  : V   Treeq      {0,1} is  a function  that  

associates  each  operator  in  the  tree  with  an  

annotation  from {0,1}. We  define  a  preorder  on  the  

nodes to give  each  node an  identifier(and  to  order  

the  children  of  binary  operators). Let I (op) denote 

the identifier of the VM node representing operator op.    

Intuitively  each witness list  of  the log  data 

provenance  of  tuple  t  represents  one  evaluation  of  

an  algebra  expression  q  . For  each witness list  w, 

each  part  of  the  algebra expression  has  either  

contributed  to  the  result  of  the evaluation q  on  w  o  

not. Therefore, we present  the  transformation  

provenance as  a  set  of  annotated  algebra trees of  q  

with  one  member  per  witness list w.  We use  data  
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provenance to  decide  whether  a  log  operator op in  q 

should  get a  0  or  a  1  annotation. Essentially  if  

evaluating  the  subtree subop  under  op  on  w results  

in  an  empty set  (subop (w) = ) , then op  has  

contributed nothing  to  the  result  tuple  t and  should  

not  be  included  in  the  transformation  provenance. 

These formalisms can be summarized below in 

Definition 3:   

Definition 3: (Transformation Provenance).  The  

transformation  provenance of  an  output  tuple  t  of  q  

is  a set  T(q,t)  of  annotated trees defined  as  follows:   

T(q,t)  = { ( Treeq  ,  ) | w  P(t) }   

w  (op) = { 0  if  subop (w) =    else  1 }   

As  a  precursor to  Definition 4, let’s  look at  the  

characteristics  required  for  VM log mapping 

provenance.. In a mapping scenario, transformations 

may be derived from a set of declarative schema 

mappings. For  most  non trivial mappings several 

transformations  exists  that  implement these  

mappings  correctly (they  produce  a  target  instance 

that  satisfies st   and  t  ).   A single transformation 

may implement more than one mapping or vice a versa.   

For  debugging  specifications  we  do not  only like  to  

know  what  parts  of  the  transformation produced  a  

target  tuple t, but  also from  what  mappings these 

transformations were  derived.    

Hence we, define mapping provenance based on 

transformation provenance and the relationships 

between transformations and mappings. The  

relationship  between a  mapping  and  part of  a 

transformation is  modeled by adding  new annotations 

(specifically  mapping  identifiers) to the  algebra  tree 

for transformation. Now for creating the VM algebra 

tree for such mapping transformations, let’s use  the  

formalism  that Treeq  = (V,E), where we introduce one  

new  annotation  function , m  , per mapping   M  st. 

The function m   is 1 for each operator that implements 

this mapping and 0 otherwise.  For  example, consider  

the mapping  M1 :  S(a)  b:  T(a,b) and M2  : S(a)  

R(a,b) T(a,b) for  target  relation T  with schema T = 

(d,e), and R, and  S  are  relation sets on M. We 

summarize this formalism in Definition 4 below:   

Definition 4: (VM log Mapping Provenance). The  

VM log  mapping  provenance M(q,t)  for  a  tuple t  

from the  result  of  a  log query q  is  defined  using  

the mapping  annotation  functions m   over  the  VM  

log  transformation provenance T(q,t) as  follows :   

 

M(q,t)  = { Mw  | w  P(q,t) }    

Mw  = { M | op V: m (op) =  w  (op) }    

 

Definition  5: (VM  Log  Provenance Object )  -  

The  VM log provenance  of  a  data  object, A, consist  

of  a  set  of  VM  Log  provenance  records, which  are  

partially ordered by  a  sequence identifier (seqID). 

Alternatively  it  is  easy  to  think  of  the  provenance  

object as  a  data aggregation (DAG).  Each   VM  log   

data object  has  a  single  most  recent  record , with  

the  greatest  value  seqID.  For  simplicity, we  will  

assume  that  a  seqID   values  are  assigned  in  the  

following  way: When  a  new  VM  Log data object  is 

inserted its  initial seqID  is  equivalent  to  the  

timestamp of the  logged  entry on  the  VM  kernel  

\var\essx3i\log  directory. For  each  such  entry  we  

keep  a  secondary index  field  called logseqID which  

starts  at  zero (0)  to  record  the  first  entry  in  the  

log. Each  newly  recorded time-stamped  log entry  

increments  by  1  to  mark  the  latest or  most  current 

entry  on  the  VM  log data  stack.     

With the exception of deletion, each operation is 

documented in the form of a VM log provenance 

record. (For the purposes of this paper, after a VM log 

object has been tagged deleted, its VM log provenance 

record is no longer relevant.) The VM log auditor 

explores generating “Deleted provenance” databases 

that manage such VM log entries in the face of its use 

in cloud forensic investigations.  We model each log  

provenance record  as a  quintuple of the form 

(seqId,LogseqID,e,{ (A1 , v1) ……, (An vn ) ).  E 

represents the entity that performed the operation i.e. 

that is a person based on login a/c and MAC address).  

(A1 , v1) ……, (An vn )  describes  the  (set of ) input  

object(s) and  their  values.  (A,v) describes  the  output  

object  and  its  value.  seqID and  logseqID  as  

composite  keys helps to describe  and confirm the 

relative order of the provenance records associated with 

specific objects. We don’t worry about the SAN disk 

performance overhead of using composite key indices, 

as this data set is a compressed provenance record 

entry. If  two (2)  records  say  rec1  and  rec2  involve  

the  same  object (with  the  same id) as  either input  or  

output,then rec1.seqID.logseqID < rec2.seqID.logseqID  

indicates  that  the  operation  described  by  rec1 

occurred  before  the operation performed  by rec2.     

 

6. VM LOG THREAT MODEL 

 

In  the  absence  of  additional  protections,  the  

VM log provenance records  and  objects  described in 

the previous section are vulnerable to illegal and  

unauthorized modifications that can go undetected. 

Throughout this paper our objective is to develop an 

efficient scheme for detecting such modifications. In  
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this section we  outline  our  threat  model  and  desired  

guarantees which  are a  variation of  those offered  by  

(Hasan et.al,2009) . In  particular , consider  a  data  

object A  and  its associated provenance object  P. 

Suppose that  P  accurately reflects  the  provenance of  

A, but  that a group  of  one  or  more attackers  would  

like to falsify  history by modifying  A  and or  P. 

Worse case the attackers of  the  virtual machine cloud 

networks are  themselves insiders(participants).    We  

set  out  the  following  desired  guarantees  with  

respect to a  single attacker :   

R1:  An  attacker  (participant) cannot modify  the  

contents of  other  participants’  provenance records 

(albeit  input or  output  values) without  being  detected 

by  a  data recipient.  

R2: An  attacker  cannot  remove other  

participants’ provenance records from any  part of  P  

without being  detected by  a  data  recipient.    

R3: An attacker cannot insert provenance records 

(other than the most recent one) into P without being 

detected.  

R4:  If  an  attacker  modifies (updates) A  without  

submitting  a  proper provenance record  to P  

documenting the update, then  this  will  be  detected by  

the  data recipient.   

R5: An attacker cannot attribute provenance 

object P (for data object A) to some other data object, B 

, without being detected by  a  data  recipient.  

In  summary, we  should  be  able  to detect an  

attack that  results from  modifying  a  VM Log  

provenance records that  has  an  immediate  successor. 

Also, we must  be  able  to  detect any  attack  that  

causes the  last  provenance record in P to mismatch the  

current  state of  object  A. In addition, it may be the 

case that multiple participants collude to attack the 

provenance object. In this case, we seek to make the 

following guarantees:   

R6:  Two colluding attackers cannot insert 

provenance records for non colluding participants 

between them without being detected by a data 

recipient.   

R7: Two colluding attackers cannot selectively 

remove provenance records of non colluding 

participants between them without being detected by a 

recipient.      

R8: Participants cannot repudiate provenance 

records.     

In our work it is important to point out the 

distinction between threat detection and threat 

prevention. Our log auditor prototype only  handles  

threat detection , and  hence our  goal  enables detection 

of  tampering; and not  denial  of  service  types  

attacks. Take for example the case example, of an 

attacker who nefariously modifies data or provenance 

objects to prevent the information from being used.  We  

also  do not  address in our current work  issues  of  

forged authorship (piracy) in which  an  attacker makes 

copies of  a  data  object, and  claims  to be the  original  

creator  of  the  data  object.   

 

7. CRYPTOGRAPHY BASICS 

 

We will make use of some basic primitives.  We 

assume a suitable public key infrastructure, and that 

each VM log auditor participant is authenticated by a 

certificate authority.    

Hash Functions:  In our current log auditor design 

we use cryptographic hash functions e.g.  SHA1.  We 

denote this function as h().  Generally speaking, h() is  

considered  secure if it  is  computationally difficult for 

an adversary to find  a  collision. i.e. m1  m2   such that 

h(m1)  = h (m2 ) .    

Public  Key  Signatures -  We  assume  that  each  

participant p  has  a public and  secret  key , denoted 

PKp and  SKp. p can  sign  a  message m by first  

hashing m, and  then encrypting h(m)  with  this  secret  

key. We denote this as Sskp(m). RSA is a common 

public key cryptosystem. 

 

8. LOG PROVENANCE INTEGRITY FOR 

ATOMIC AND COMPOUND OBJECTS 

 

We begin with the simple case in which we have a 

VM Log auditor database D comprised of atomic event 

log objects. In this case, we propose to provide tamper 

evidence by adding a provenance checksum to each 

provenance record. This checksum provision applies 

both Merkle Hash trees and Huffman compression to 

enforce losslessness on the data set. In the case of linear 

provenance (operations comprising of only insertions, 

updates, and deletions).      

   

9. EXPERIMENTS 

 

Section (10) and (11) describe our experimental 

setup and analysis respectively.  

 

10. EXPERIMENTAL SET-UP 

 

At the University of Technology [UTECH] we 

demonstrate the design of a virtual machine log auditor 

using Windows 7 based VMWare essx3i data centre.  

We setup an Oracle 11g relational database to run an 



 

7 

independent Windows 7 hosted physical server with its 

own Storage Area Network (SAN) terabyte disk.  Our 

VM log audit server runs periodic ftp sessions to the 

production SAN to retrieve the system event and 

application event logs and sends this log data back to 

our test SAN. We use a SENDER script to complete 

this process. Note this is a shell script. The log auditor 

runs a LOADER batch file script to parse the retrieved 

ftp logs to the Oracle 11g relational database (Thorpe 

et.al 2011) . It is at this stage we assign a provenance 

checksum as well as the compression of this hash. 

Presently the auditor checks the provenance logs for 

frequency of occurrence and anomalies in such log data 

occurrences.  

The frequency of the VM log data anomalies is 

critical to forensic analysis, but we’ll not discuss that 

here. We had been particularly concerned about how 

the log auditor’s database will maintain its own security 

if these provenance logs experience exponential growth 

on the SAN disk. To this end, we have applied Huffman 

compression codes to the hashed log auditor database.                                               

The log auditor’s front end application runs on a 

Java Web enabled browser. We use the 

java.security.message Digest (“algorithm SHA”) which 

generates a 20 byte message digest. And we use 

java.crypto.Cipher to generate a 128byte signature 

(given a 1024 byte key). Our Huffman compression 

algorithm is built using C++ code which we import into 

our Java Application as a remote procedure call. For the 

purposes of this paper we take a sample of system event 

logs and application logs over different time points to 

demonstrate our proof of concept. These event logs can 

be viewed as compound objects of several provenance 

record entries. Each VM log event transaction is a time-

stamped transaction and hashed based on the sequence 

of each record loaded to the log auditor. 

 

11. EXPERIMENTAL ANALYSIS 

 

We analyze the impact of our approach, by running a 

series of hash compression on these logs as seen in 

Table 1. We use three (3) System log events and three 

(3) Application log events over similar time intervals as 

pairs of events to correlate log database performance 

with the disk before and after we apply the compressed 

provenance hash. The logs analyzed are snapshots of 

the actual sizes of the files we captured from the VM 

host. Here are the actual results generated in Table 1:  

 

 

TABLE I.  :   REPRESENTS THE TABLE OF 

SYNCHRONIZED SYSTEM  AND APPLICATION LOG EVENTS  

STORED BY OUR VM LOG AUDITOR DATABASE. 

 

 

From table 1 the hash compression on log entries 

shows a general performance improvement on the 

Storage Area Network (SAN) disk utilization by a 

range of 33% to 37%. Although the disk utilization is 

not principal to our log study in this paper, the results 

are useful for two reasons. (a)  As the rate of the logs 

grow we recognize that the optimality on the disk 

improves as we process the logs for provenance (b)  For 

the smallest size comma delimited log files , the 

optimality of performance is comparable with the 

largest log file databases also available within our black 

box. Hence the throughput of the log audit provenance 

processing has little overhead to our results. In Figure 1 

below we use the graph tabulation to provide further 

empirical analysis discussion to these results.   

 

Figure 1:  Snapshot Analysis of System Event Logs versus 

Application Logs 
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Following on from our observations in Table 1, 

we use Figure 1 to capture  the consistency of  

performance improvement between system and 

applications logs for the  different  log sizes from  the  

sample  in  this  study. The application logs denote the 

changes in student related registration and assessment 

periods within the University. We decided to assess two 

periods-: Peak and Off Peak. For e.g. the period  

25/12/10  is  an  off  peak  period when school  is  on  

recess and little traffic over  the network is  expected. 

Since  the  student  assessment system accounts for the 

largest use of  the VMWare Vcenter  system resources, 

our  log auditor application  demonstrates a relatively 

smaller log file utilization for system events as 

compared to the larger  application events. During the 

period 29/01/11 to 04/02/11, a peak period, in student 

registration for the Spring term, when log traffic is at its 

highest. This log traffic is somewhat consistent for both 

the System and application log instances in both the 

peak and off peak periods. Notwithstanding our 

compression hash technique show that for both log type 

occurrences, performance overhead is cut by 

approximately 1/3 when using the compressed log 

provenance hash for auditing. This result is useful as it 

demonstrates our ability to improve the SAN disk life 

by the same margin, to support new log provenance 

entries. Independent work will discuss how 

synchronized log compression on the VM can impact 

capacity planning on the SAN disk as a set of use case 

scenarios.     

 

 

12. CONCLUSION 

 

In this paper the authors have initiated a study of 

enabling virtual machine log security using compressed 

hashed provenance techniques. The main contribution 

is a set of primary formal protocol definitions and case 

arguments for establishing correctness and authenticity 

for the preservation of log data collected in these 

logical domains. The work is further corroborated by an 

experimental University case study on same.  From the 

literature this appears to be one of the first few papers 

that have done any evaluation for the work prescribed. 

Future work includes, looking at the history of data 

ownership on the VM and how one can provide suitable 

access control mechanisms for these VM audit log 

entries. Secondly, we seek to explore how one can use 

these preserved logs as a part of case evidence in cloud 

digital investigations.  
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