
International Journal of Information Science and Computer Application (IJISCA) Vol 1 (2012), pp 1-10

1

Formal Hash Compression Provenance Techniques for the

Preservation of the Virtual Machine Log Auditor Environment

Sean Thorpe

Faculty of Engineering and Computing, University of Technology, Kingston, Jamaica

thorpe.sean@gmail.com

Indrajit Ray

Department of Computer Science, Colorado State University, Fort Collins, USA

indrajit@cs.colostate.edu

Tyrone Grandison

IBM Research, Yorktown Heights, NY, USA

tyroneg@us.ibm.com

Abbie Barbir

Bank of America

abbie.barbir@bankofamerica.com

Abstract: In this paper we provide tamper proof mechanisms for auditing old log entries as a part of

lineage provenance within the virtual machine (VM) environment. For each VM provenance log record

we apply SHA1 hash checksums, all encapsulated as huffman compressed codes to enforce log

preservation against tampering. Our contribution establishes new formal definitions for the VM log

provenance. Additionally we have performed base line experimental case studies of how we have

started to corroborate these prescribed concerns. For example the significance of using compression,

demonstrates the ability of our virtual machine(VM) log auditor disk to preserve the aging log entries

for 33% longer than before on the existing VM disk host. We believe these considerations within our

research are useful for both the digital investigator and the system administrator who have the arduous

tasks for managing the security of these new logical perimeters. This work is motivated by the

ongoing work of the authors to demonstrate new security and forensic models for managing log data

clouds.

Key words: Provenance, Hash, Log, Cloud, Auditor, Security

1. INTRODUCTION

Database provenance chronicles the history of

updates and modifications to data and has received

much attention due to its role in scientific data

management. Many data security administrators would

argue that its acceptance however requires a leap of

faith. However the use of provenance information in of

itself offers little protection to database records as they

are susceptible to accidental data corruption,

malicious forgery, a set of problems is often prevalent

in loosely coupled environments like the nefarious VM

data clouds we have today.

We provide in this paper a tamper proof

mechanism for providing provenance to the VM log

data running on the physical host operating systems as

one technique for providing enforceable audit trails and

by extension security within the VM system

administered environment. We propose a checksum

compression based approach, which is well suited to the

mailto:thorpe.sean@gmail.com
mailto:indrajit@cs.colostate.edu
mailto:tyroneg@us.ibm.com
mailto:abbie.barbir@bankofamerica.com

2

problem of database provenance, including non linear

provenance objects and provenance associated with

multiple fine granularities for the virtual machine

hypervisor kernel log data. We apply this work in the

context of our software prototype-: which is a virtual

machine log auditor that profiles and manage the VM

application identities, events, states and processes,

within the this abstract domain. We demonstrate that

the proposed solution satisfies a set of desirable security

properties, and that the additional time incurred by the

checksum approach is manageable, and a feasible

approach in practice for auditing virtual machine log

entries.

2. RELATED WORK

Provenance describes the history of creation and

modification of data. Problems of recording, storing

and querying provenance information are increasingly

important in data intensive scientific environments,

where the value of the data is tied to the method of

creation of this data in the first place, and by whom

(Annis et.al, 2002) . In the decentralized and multi-user

environments, we observe that individuals who obtain

and use data, do so at that their own risk. They need to

trust that the provenance information associated with

the data accurately reflects the process by which it was

created and refined, but we explore the Cloud trust

formalisms in a separate paper. Unfortunately this very

data is subject to forgery and data corruption from

disparate sources albeit accidental or willful. To this

point, integrity has not been a well addressed solution

by database provenance. While recent work in the

context of file systems exists, the proposed solutions

are not applicable to databases within a virtual machine

cloud. In particular (Hassan et.al, 2009) only

considered provenance as a total ordered chain of

events on an atomic object (i.e. a file). Traditionally, for

databases, provenance is treated as a set of partial

ordered events on a set of compound objects (e.g.

records, tables or even a whole database).

Throughout the paper, we consider an abstract set

of VM participants (users, processes, transactions etc.)

that contribute to one or more data objects through

insertions, deletions, updates, aggregations. Information

about these modifications is collected and stored in

the form of a synchronized logical provenance record

as the basis of qualifying an auditable log entry of

an aging VM record. Various system architectures

have been proposed by (Bhagwat et.al, 2004) and

(Buneman et.al,2007) for collecting and maintaining

provenance records, from attaching provenance to the

data itself as a form of annotation to depositing

provenance in one or more repositories . Thus, one of

our chief goals is to develop a cross platform solution

for enabling tamper resistant provenance for security of

logs for our synchronized virtual machine log database

schemas. We recognize that it is pointless that since

data is collected and shared in a decentralized and

loosely coupled manner, it is impractical to use secure

logging tools like that of our virtual machine log

auditor that rely, for example on trusted hardware or

other system level assumptions about secure operations.

Occasionally, a data recipient will request and

obtain one or more of these data objects. In

keeping with the vision of using provenance in the

first place, each database log object running on the

auditor’s back end database is accompanied by a

provenance object. We seek to establish this by

providing basic cryptographic proofs and well

founded assumptions to the System administrator that

the provenance object has not been maliciously

altered or forged. The closest work to ours is that

described (Hassan et.al,2009) which focused on

security problems (integrity and confidentiality) that

arise when tracking and storing provenance in a file

system . While our work utilizes a similar threat model

and integrity checksum approach, we must deal with

a significantly more complicated VM data model (i.e.

compound VM data objects) and provenance model in

order to apply these techniques in a database setting.

A recent vision paper by (Miklau et.al,2005)

considered the problem of data authenticity on the

web, and described a pair of operations (signature

and citation) for tracking the authenticity of derived

data. One of the main differences between that work

and our work is the structure of participants’

transformations. The previous work assumed that

transformations were structured in a limited way

(specifically, as conjunctive queries), whereas we

consider a more dynamic scenario of VMs in an

arbitrary black box of such transformations. The

general problem of logging and auditing for cloud

databases has become increasingly important in recent

years. Research in this area has focused on

developing queryable VM audit logs and tamper

evident logging techniques like those discussed in the

papers by (Snodgrass et.al,2004)and (Tan et.al,2006).

In addition, there has been considerable recent

interest in developing authenticated data structures to

verify the integrity of query results in dictionaries,

outsourced databases, and third party data publishing

as discussed in papers like those of (Devanbu et.al,

2000), (Frew et.al,2008), and (Foster et.al,2002).

3

Finally, the provenance community has begun to think

about security issues surrounding provenance records

and annotations. Authors like (Braun et.al, 2008) and

(Tan et.al, 2006) motivate the need for understanding

the complications in provenance systems. Several

systems have implemented a provenance system to

protect information from unauthorized access: for

provenance in a service oriented environment (SOA);

and for annotations. The Cloud computing community

which happens to be a more recently introduced

community within the SOA environment is like other

groups seeking to find secure methods of releasing

information. For an abstract domain as the virtual

machine cloud this is a challenging problem.

3. CONTRIBUTIONS AND PAPER

OVERVIEW

This is the first study as far as the literature

reveals on the integrity and tamper proof mechanisms

provided for database provenance within the compute

cloud environment. While related work has focused on

security (integrity and confidentiality) for file system

provenance, we extend the prior work in the following

important ways:

Non Linear Provenance for virtualized log

databases - Database operations often involve the

integration and aggregation of objects. One might

consider treating an object produced in this way as

if it were new (with no history), but this discards the

history of the objects taken as input to the

aggregation. Thus, in databases it is common to model

provenance in terms of data aggregation (DAG) or non-

linear provenance.

Compound VM log objects - In a virtualized

database, it is critical to think of provenance

associated with multiple granularities of data, rather

than to simply associate provenance with atomic

objects. For example, in the relational data model,

each table, row, and cell has associated provenance,

and the provenance of these objects are inter-

related.

The remainder of this paper is organized as

follows: In Section 4, we lay the ground work by

describing the database provenance model and

integrity threat model for a virtual machine log

auditing environment. We then present tamper proof

provenance techniques for an atomic and compound

VM logic object.(i.e. Section 5). In Section 6, we

provide the type of VM threat model that impacts the

provenance arguments from Section 5.In Section 7 and

8 we present the cryptographic basics of our arguments.

In Section 9 and 10, and 11 we present the proof of

concept experiment. And finally in Section 12 we

provide the conclusion and future work.

4. PRELIMINARIES

We begin with the preliminary building blocks of our

work, which include the basic VM provenance model

and integrity model. As a short precursor definition, the

VM data clouds is predicated on the service oriented

architecture design principle of providing IT resources

as an on demand, elastic service to end users (Mell

et.al., 2009).The VM data cloud supports three (3)

deployment layers of service namely-: Software as a

Service (SAAS), Infrastructure as a Service (IAAS),

and Platform as a Service (PAAS). Both the IAAS and

PAAS are system layer services, while SAAS is an

application layer service within the virtualization stack.

In our work for log audit provenance, we focus at the

PAAS system layer of this virtualization stack, since we

handle the error, system, and application logs stored on

the hypervisor kernel. Throughout this paper, we will

consider a VM log system database D, consisting of a

set of VM log data objects. Each VM object has a

unique identifier, which we will denote using a capital

letter, and a value. We will use the notation A.val to

refer to the current value of a VM log object A. Our log

auditor’s database supports the following common

operations:

- Insert (A,val): Add a new object A to D

 with initial value val .

- Delete (A): Remove an existing object A from

D.

- Update (A, val1): Update the value of A to

 the new value val1

- Aggregate ({A1 ……..An },B); Combine

 objects A1 ……..An to form a new object B.

5. VIRTUAL MACHINE LOG

PROVENANCE MODEL

In this section we formally define the intuitive

definitions for the virtual machine log provenance. Log

provenance describes the relationship between the

result of a transformation and the inputs that

contributed to it. In a relational setting, this is usually

interpreted as the input tuples of some VM hypervisor

log query q that contributed to an output tuple t of q. In

our study to date there is still no evidence where log

4

provenance for the VM environment has any sufficient

use cases that address its application. For this reason

our approach is still subject to an enterprise

implementation of these concerns. Notwithstanding a

conceptual design outlook should provide initial

specification models for which we could seek to assess

the implementations. We adopt our ideas based on

existing techniques used within the PI-CS (Perm

influence Contribution Semantics) and Lineage CS

literature for applying data provenance.

We scale these contribution semantic definitions

to define new ones for the hybrid virtual machine

environment. For the purposes of this work we refer to

such contribution as VM- LCS (virtual machine log

contribution semantic). Let’s assume that the VM-LCS

models the provenance of a result tuple t of a query q

as a list W (q,t) = <Q* 1 …….Q* n > of subsets Q* i of

the inputs Qi of the query(where the inputs could be

base relations or the result of other log queries) that

contribute to t. One should not seek to model

provenance as an independent set of tuples as it has

the distinct disadvantage that the information about

which input tuples were combined to produce a

result is not at all modeled. In other words input tuple

correlation is critical and complicit within our VM-

LCS. Hence to explicitly model which tuples were

used together in the creation of an output tuple, we

consider the provenance representation from a list of

subsets of the input relations to a set of log witness

list. Thus a log witness list w is an element from <Q 1

x…..x Q n > with Qi  = Qi U . Thus a log

witness list w contains a tuple from each input of

an operator or the special value . The value 

indicates that no tuple from an input relation belongs to

the log witness list. This is particular useful if we

consider the relational algebra implication, in that one

can model outer joins and unions which are both

important in the integration of the VM log data

sources and targets. Each log witness list represents

a combination of input relation tuples that were

used together to derive a tuple. We can now represent

this contribution as a formal definition

Definition 1: (VM-LCS provenance). For an

algebra log operator op with inputs Q1 ……….Qn , and

a tuple t  op(Q1 …….Qn) a set P(op,t)  W = (Q 1

x…..x Q n) where Qi  = Qi U .is the VM-LCS of t

if it fulfills the following conditions:

(1) op(P(op,t)) = {t}

(2) wP(op,t) :op(w)0

(3) P1  W : P1  P (op,t)  P1 ╞ (1),(2),(4)

(4) w,w1  P(op,t) : w  w1  wP(op,t)

The first condition (1) in the Definition 1 checks

that the provenance produces exactly t and nothing else

by computing the result of the operator op over the

provenance. The second condition (2) guarantees that

each log witness list w (combination of tuples) in P

contributes something to t (removes false positives).

The third condition (3) checks that P is the maximal set

with these properties, meaning that no witness lists that

contribute to t are left out. The provenance of a VM log

query is computed recursively applying Definition 1 to

each operator of the query. The fourth condition (4) is

necessary to produce precise provenance for outer joins

and set union. This condition states that we will

exclude a witness list w from the provenance, if

there is a smaller witness list w1 in the provenance

that subsumes w. A witness list w is subsumed by

a witness list w1 (denoted by : w  w1) iff w1 can

be derived from w by replacing some input tuples

from w with .

The second formalism which we’ll discuss is

transformation provenance. We model the parts of

transformation provenance that contribute to an output

tuple. In contrast to traditional data provenance,

transformation provenance is operator centric. In

retrospect one could say that transformation provenance

is similar to approaches in workflow management

systems. We articulate the VM log transformation

provenance as transformation q using an annotated

algebra tree for q. For an output tuple t and a witness

list w in the data provenance of t, the transformation

provenance will include 1 and 0 annotations on the

operators of the transformation q. A 1 indicates this

operator on w influences t, a 0 indicates it doesn’t.

Definition 2: (Annotated Algebra tree). An

annotated algebra tree for a VM log transformation q

is a pair (Treeq , ) where Treeq = (V,E) is a tree

that contains a VM log node for each algebra

operator used in q (including the base relations as

leaves) and  : V  Treeq  {0,1} is a function that

associates each operator in the tree with an

annotation from {0,1}. We define a preorder on the

nodes to give each node an identifier(and to order

the children of binary operators). Let I (op) denote

the identifier of the VM node representing operator op.

Intuitively each witness list of the log data

provenance of tuple t represents one evaluation of

an algebra expression q . For each witness list w,

each part of the algebra expression has either

contributed to the result of the evaluation q on w o

not. Therefore, we present the transformation

provenance as a set of annotated algebra trees of q

with one member per witness list w. We use data

5

provenance to decide whether a log operator op in q

should get a 0 or a 1 annotation. Essentially if

evaluating the subtree subop under op on w results

in an empty set (subop (w) = ) , then op has

contributed nothing to the result tuple t and should

not be included in the transformation provenance.

These formalisms can be summarized below in

Definition 3:

Definition 3: (Transformation Provenance). The

transformation provenance of an output tuple t of q

is a set T(q,t) of annotated trees defined as follows:

T(q,t) = { (Treeq , ) | w  P(t) }

w (op) = { 0 if subop (w) =  else 1 }

As a precursor to Definition 4, let’s look at the

characteristics required for VM log mapping

provenance.. In a mapping scenario, transformations

may be derived from a set of declarative schema

mappings. For most non trivial mappings several

transformations exists that implement these

mappings correctly (they produce a target instance

that satisfies st and t). A single transformation

may implement more than one mapping or vice a versa.

For debugging specifications we do not only like to

know what parts of the transformation produced a

target tuple t, but also from what mappings these

transformations were derived.

Hence we, define mapping provenance based on

transformation provenance and the relationships

between transformations and mappings. The

relationship between a mapping and part of a

transformation is modeled by adding new annotations

(specifically mapping identifiers) to the algebra tree

for transformation. Now for creating the VM algebra

tree for such mapping transformations, let’s use the

formalism that Treeq = (V,E), where we introduce one

new annotation function , m , per mapping M  st.

The function m is 1 for each operator that implements

this mapping and 0 otherwise. For example, consider

the mapping M1 : S(a)  b: T(a,b) and M2 : S(a) 

R(a,b) T(a,b) for target relation T with schema T =

(d,e), and R, and S are relation sets on M. We

summarize this formalism in Definition 4 below:

Definition 4: (VM log Mapping Provenance). The

VM log mapping provenance M(q,t) for a tuple t

from the result of a log query q is defined using

the mapping annotation functions m over the VM

log transformation provenance T(q,t) as follows :

M(q,t) = { Mw | w  P(q,t) }

Mw = { M | op V: m (op) = w (op) }

Definition 5: (VM Log Provenance Object) -

The VM log provenance of a data object, A, consist

of a set of VM Log provenance records, which are

partially ordered by a sequence identifier (seqID).

Alternatively it is easy to think of the provenance

object as a data aggregation (DAG). Each VM log

data object has a single most recent record , with

the greatest value seqID. For simplicity, we will

assume that a seqID values are assigned in the

following way: When a new VM Log data object is

inserted its initial seqID is equivalent to the

timestamp of the logged entry on the VM kernel

\var\essx3i\log directory. For each such entry we

keep a secondary index field called logseqID which

starts at zero (0) to record the first entry in the

log. Each newly recorded time-stamped log entry

increments by 1 to mark the latest or most current

entry on the VM log data stack.

With the exception of deletion, each operation is

documented in the form of a VM log provenance

record. (For the purposes of this paper, after a VM log

object has been tagged deleted, its VM log provenance

record is no longer relevant.) The VM log auditor

explores generating “Deleted provenance” databases

that manage such VM log entries in the face of its use

in cloud forensic investigations. We model each log

provenance record as a quintuple of the form

(seqId,LogseqID,e,{ (A1 , v1) ……, (An vn)). E

represents the entity that performed the operation i.e.

that is a person based on login a/c and MAC address).

(A1 , v1) ……, (An vn) describes the (set of) input

object(s) and their values. (A,v) describes the output

object and its value. seqID and logseqID as

composite keys helps to describe and confirm the

relative order of the provenance records associated with

specific objects. We don’t worry about the SAN disk

performance overhead of using composite key indices,

as this data set is a compressed provenance record

entry. If two (2) records say rec1 and rec2 involve

the same object (with the same id) as either input or

output,then rec1.seqID.logseqID < rec2.seqID.logseqID

indicates that the operation described by rec1

occurred before the operation performed by rec2.

6. VM LOG THREAT MODEL

In the absence of additional protections, the

VM log provenance records and objects described in

the previous section are vulnerable to illegal and

unauthorized modifications that can go undetected.

Throughout this paper our objective is to develop an

efficient scheme for detecting such modifications. In

6

this section we outline our threat model and desired

guarantees which are a variation of those offered by

(Hasan et.al,2009) . In particular , consider a data

object A and its associated provenance object P.

Suppose that P accurately reflects the provenance of

A, but that a group of one or more attackers would

like to falsify history by modifying A and or P.

Worse case the attackers of the virtual machine cloud

networks are themselves insiders(participants). We

set out the following desired guarantees with

respect to a single attacker :

R1: An attacker (participant) cannot modify the

contents of other participants’ provenance records

(albeit input or output values) without being detected

by a data recipient.

R2: An attacker cannot remove other

participants’ provenance records from any part of P

without being detected by a data recipient.

R3: An attacker cannot insert provenance records

(other than the most recent one) into P without being

detected.

R4: If an attacker modifies (updates) A without

submitting a proper provenance record to P

documenting the update, then this will be detected by

the data recipient.

R5: An attacker cannot attribute provenance

object P (for data object A) to some other data object, B

, without being detected by a data recipient.

In summary, we should be able to detect an

attack that results from modifying a VM Log

provenance records that has an immediate successor.

Also, we must be able to detect any attack that

causes the last provenance record in P to mismatch the

current state of object A. In addition, it may be the

case that multiple participants collude to attack the

provenance object. In this case, we seek to make the

following guarantees:

R6: Two colluding attackers cannot insert

provenance records for non colluding participants

between them without being detected by a data

recipient.

R7: Two colluding attackers cannot selectively

remove provenance records of non colluding

participants between them without being detected by a

recipient.

R8: Participants cannot repudiate provenance

records.

In our work it is important to point out the

distinction between threat detection and threat

prevention. Our log auditor prototype only handles

threat detection , and hence our goal enables detection

of tampering; and not denial of service types

attacks. Take for example the case example, of an

attacker who nefariously modifies data or provenance

objects to prevent the information from being used. We

also do not address in our current work issues of

forged authorship (piracy) in which an attacker makes

copies of a data object, and claims to be the original

creator of the data object.

7. CRYPTOGRAPHY BASICS

We will make use of some basic primitives. We

assume a suitable public key infrastructure, and that

each VM log auditor participant is authenticated by a

certificate authority.

Hash Functions: In our current log auditor design

we use cryptographic hash functions e.g. SHA1. We

denote this function as h(). Generally speaking, h() is

considered secure if it is computationally difficult for

an adversary to find a collision. i.e. m1  m2 such that

h(m1) = h (m2) .

Public Key Signatures - We assume that each

participant p has a public and secret key , denoted

PKp and SKp. p can sign a message m by first

hashing m, and then encrypting h(m) with this secret

key. We denote this as Sskp(m). RSA is a common

public key cryptosystem.

8. LOG PROVENANCE INTEGRITY FOR

ATOMIC AND COMPOUND OBJECTS

We begin with the simple case in which we have a

VM Log auditor database D comprised of atomic event

log objects. In this case, we propose to provide tamper

evidence by adding a provenance checksum to each

provenance record. This checksum provision applies

both Merkle Hash trees and Huffman compression to

enforce losslessness on the data set. In the case of linear

provenance (operations comprising of only insertions,

updates, and deletions).

9. EXPERIMENTS

Section (10) and (11) describe our experimental

setup and analysis respectively.

10. EXPERIMENTAL SET-UP

At the University of Technology [UTECH] we

demonstrate the design of a virtual machine log auditor

using Windows 7 based VMWare essx3i data centre.

We setup an Oracle 11g relational database to run an

7

independent Windows 7 hosted physical server with its

own Storage Area Network (SAN) terabyte disk. Our

VM log audit server runs periodic ftp sessions to the

production SAN to retrieve the system event and

application event logs and sends this log data back to

our test SAN. We use a SENDER script to complete

this process. Note this is a shell script. The log auditor

runs a LOADER batch file script to parse the retrieved

ftp logs to the Oracle 11g relational database (Thorpe

et.al 2011) . It is at this stage we assign a provenance

checksum as well as the compression of this hash.

Presently the auditor checks the provenance logs for

frequency of occurrence and anomalies in such log data

occurrences.

The frequency of the VM log data anomalies is

critical to forensic analysis, but we’ll not discuss that

here. We had been particularly concerned about how

the log auditor’s database will maintain its own security

if these provenance logs experience exponential growth

on the SAN disk. To this end, we have applied Huffman

compression codes to the hashed log auditor database.

The log auditor’s front end application runs on a

Java Web enabled browser. We use the

java.security.message Digest (“algorithm SHA”) which

generates a 20 byte message digest. And we use

java.crypto.Cipher to generate a 128byte signature

(given a 1024 byte key). Our Huffman compression

algorithm is built using C++ code which we import into

our Java Application as a remote procedure call. For the

purposes of this paper we take a sample of system event

logs and application logs over different time points to

demonstrate our proof of concept. These event logs can

be viewed as compound objects of several provenance

record entries. Each VM log event transaction is a time-

stamped transaction and hashed based on the sequence

of each record loaded to the log auditor.

11. EXPERIMENTAL ANALYSIS

We analyze the impact of our approach, by running a

series of hash compression on these logs as seen in

Table 1. We use three (3) System log events and three

(3) Application log events over similar time intervals as

pairs of events to correlate log database performance

with the disk before and after we apply the compressed

provenance hash. The logs analyzed are snapshots of

the actual sizes of the files we captured from the VM

host. Here are the actual results generated in Table 1:

TABLE I. : REPRESENTS THE TABLE OF

SYNCHRONIZED SYSTEM AND APPLICATION LOG EVENTS

STORED BY OUR VM LOG AUDITOR DATABASE.

From table 1 the hash compression on log entries

shows a general performance improvement on the

Storage Area Network (SAN) disk utilization by a

range of 33% to 37%. Although the disk utilization is

not principal to our log study in this paper, the results

are useful for two reasons. (a) As the rate of the logs

grow we recognize that the optimality on the disk

improves as we process the logs for provenance (b) For

the smallest size comma delimited log files , the

optimality of performance is comparable with the

largest log file databases also available within our black

box. Hence the throughput of the log audit provenance

processing has little overhead to our results. In Figure 1

below we use the graph tabulation to provide further

empirical analysis discussion to these results.

Figure 1: Snapshot Analysis of System Event Logs versus

Application Logs

Log Type

Log

Run

Date

Initial

Logsize

(Bytes)

Compress-

ed Hash

(Bytes)

Log Disk

Rate

Optimizati

on (%)

System

Event
25/12/10 1823 1243 33%

System
Event

29/01/11 3475 2273 35%

System

Event
04/02/11 3475 2273 35%

Application
Event

25/12/10 81093 54610 33%

Application

Event
29/01/11 1047565 930190 37%

Application
Event

04/02/11 1052043 985347 35%

0
80000

160000
240000
320000
400000
480000
560000
640000
720000
800000
880000
960000

1040000
1120000

System
Event

(25.12.10)

Application
Event

(25.12.10)

System
Event

(29.01.11)

Application
Event

(29.01.11)

System
Event

(04.02.11)

Application
Event

(04.02.11)

b

y

t

e

s

Time

Initial Log Size(bytes) Compressed Hash(bytes)

8

Following on from our observations in Table 1,

we use Figure 1 to capture the consistency of

performance improvement between system and

applications logs for the different log sizes from the

sample in this study. The application logs denote the

changes in student related registration and assessment

periods within the University. We decided to assess two

periods-: Peak and Off Peak. For e.g. the period

25/12/10 is an off peak period when school is on

recess and little traffic over the network is expected.

Since the student assessment system accounts for the

largest use of the VMWare Vcenter system resources,

our log auditor application demonstrates a relatively

smaller log file utilization for system events as

compared to the larger application events. During the

period 29/01/11 to 04/02/11, a peak period, in student

registration for the Spring term, when log traffic is at its

highest. This log traffic is somewhat consistent for both

the System and application log instances in both the

peak and off peak periods. Notwithstanding our

compression hash technique show that for both log type

occurrences, performance overhead is cut by

approximately 1/3 when using the compressed log

provenance hash for auditing. This result is useful as it

demonstrates our ability to improve the SAN disk life

by the same margin, to support new log provenance

entries. Independent work will discuss how

synchronized log compression on the VM can impact

capacity planning on the SAN disk as a set of use case

scenarios.

12. CONCLUSION

In this paper the authors have initiated a study of

enabling virtual machine log security using compressed

hashed provenance techniques. The main contribution

is a set of primary formal protocol definitions and case

arguments for establishing correctness and authenticity

for the preservation of log data collected in these

logical domains. The work is further corroborated by an

experimental University case study on same. From the

literature this appears to be one of the first few papers

that have done any evaluation for the work prescribed.

Future work includes, looking at the history of data

ownership on the VM and how one can provide suitable

access control mechanisms for these VM audit log

entries. Secondly, we seek to explore how one can use

these preserved logs as a part of case evidence in cloud

digital investigations.

REFERENCES

Secure hash standard. Federal Information Processing

Standards Publication [FIPS PUB]. 180 (1), April

1995

R.Agrawal, R.Bayardo, C.Faloustos, J.Kierman,

R.Rantzau, and R.Skrikant. Auditing Compliance

with Hippocratic database. In VLDB 2004.

J.Annis, Y.Zhao, J.-S. Volcker, M. Wilde, S.Kent, and

I. Foster. Applying chimera virtual data concepts to

cluster finding in the sloan sky survey. In

Proceedings of the ACM/IEEE Conference on

Supercomputing, 2002

O.Benjelloun, A.Das Sarma, A. Halevy, and J. Widom.

ULDBs: Databases with uncertainty and lineage. In

VLDB, 2006.

D. Bhagwat, L.Chiticariu, and W.-C.Tan., and

G.Vijayvargiya. An annotation management

system for relational databases. In VLDB 2004.

U. Braun, A. Shinnar, and M. Seltzer. Securing

Provenance. In USENIX, July 2008

P. Buneman, A. Chapman, J. Cheney. Provenance

management in curated databases. In ACM

SIGMOD, 2006.

P.Buneman, J.Cheney and S. Vansummeren. On the

expressiveness of implicit provenance in query and

update languages. In ICDT, 2007.

P.Buneman, S. Khanna, and W.-C. Tan. What and

where. A characterization of data provenance.

Lecture Notes in Computer Science, 2001

 S.P.Callahan, J.Freire, E.Santos, C.E. Scheidegger,

C.T. Silvand, and H.T.Vo. Vistrails. Visualization

meets data management. In ACM SIGMOD 2006

A. Chapman, H.V. Jagadish, and P. Ramanan. Efficient

provenance storage. In ACM SIGMOD, 2008

 A.Chebotko, S.Chang, S.Lu, F. Fotouhi, and P.Yang.

Scientific workflow provenance querying with

security views. In WAIM, 2008.

A.Cirillo, R.Jagadeesan, C.Pitcher, and J.Riely. Tapido:

Trust and Authorization viaProvenance and

Integrity in Distributed Objects. Lecture Notes in

Computer Science, Programming Languages and

Systems Edition, 2008.

S.Davidson, S.Cohen-Boulakia, A.Eyal, B. Ludascher,

T.McPhillips, S.Bowers, and J.Freire. Provenance

in Scientific Workflow Systems. IEEE Data

Engineering Bulletin, 32(4), 2007.

P.Devanbu, M.Gertz, A.Kwong, C.Martel, G. Nuckolls,

and S. Stubblebine. Flexible authentication of

XML documents. Journal of Computer Security,

12(6), 2004.

P.Devanbu, M.Gertz, C.Martel, and S. Stubblebine.

Authentic third party data publication. In

9

Proceedings of the IFIP 11.3 Workshop on

Database Security, 2000

I. Foster, J.Vockler, M.Eilde, and Y.Zhao, Chimera: A

Virtual data system for representing and querying,

and automating data derivation. In SSDBM, 2002.

J.Frew, D.Metzger, and P.Slaughter.Automatic Capture

and reconstruction of computational provenance.

Concurr. Comput: Pract. Exper., 20(5): 485-496,

2008

P.Groth, S.Miles, and W.Fang, S.Wong, K. – P. Zauner,

and L.Moreau. Recording and using provenance in

the protein compressibility experiment. In IEEE

Symposium on High Performance Distributed

Computing, 2005.

P.Groth, S.Miles, and L.Moreau. PReServ: Provenance

recording for services. In Proceedings of the UK

OST e-Science second All Hands Meeting

2005(AHM’05), 2005

R.Hasan, R.Sion, and M.Winslett. Introducing secure

provenance: Problems and challenges. In

International Workshop on Storage Security and

Survivability, 2007.

R.Hasan, R.Sion, and M. Winslett. The case of the fake

Picasso: Preventing history forgery with secure

provenance. In FAST 2009.

I. Khan, R.Schroeter, and J.Hunter. Implementing a

Secure Annotation Service. LectureNotes in

Computer Science. Springer Berlin/Heidelberg,

Provenance and Annotation of Data, edition

2006.

F.Li, M. Hadjieleftheriou, G.Kollins, and L. Reyzin.

Dynamic authenticated index structures for

outsourced databases. In ACM SIGMOD, 2006.

G.Miklau and D.Suciu. Managing integrity for data

exchanged on the web. In WebDB, 2005.

K. Muniswamy-Reddy, D.Holland, U. Braun, and M.

Seltzer. Provenance aware storage systems. In

USENIX 2006.

M.Noar and K.Nissim. Certificate Revocation and

Certification update. In USENIX, 1998.

T.Oinn, M.Greenwood, M. Addis, M.N Alpedimir,

J.Ferris, K.Glover, C.Goble, A. Goderis, D.Hull,

D.Marvin, P.Li, P.Lord, M.R. Pocock, M.Senger ,

R.Stevens,A.Wipat, and C.Wroe.Taverna. Lessons

in creating a workflow environment for the life

sciences. Research Articles. Concurr.

Comput.:Pract. Exper, 18 (10), 2006

OpenProvenanceModel.

http://twiki.ipaw..info/bin/view/Challenge/OPM,

2008

H.Pang, A.Jain, K.Ramamritham and K.Tan. Verifying

Completeness of relational query results in data

publishing. In ACM SIGMOD 2005

A. Rosenthal, L. Seligman, A. Chapman, and B.

Blaustein. Scalable access controls for lineage.

Workshop on the theory and Practice of

Provenance, 2009

R.Snodgrass, S.Yao, and C.Collberg. Tamper detection

in audit logs. In VLDB, 2004.

V.Tan, P.Groth, S.Miles, S.Jiang, S.Munroe,

S.Tsasakou, and L. Moreau. Security Issues in a

SOA Based Provenance System. Lecture Notes in

Computer Science. Springer Berlin/Heidelberg,

Provenance and Annotation of Data Edition, 2006.

W.T.Tsai, X.Wei, Y.Chen, R.Paul, J.-Y.Chung, and

D.Zhang. Data Provenance in SOA: security,

reliability, and integrity. Journal of Service

Oriented Computing and Applications, 2007.

S. Thorpe, I. Ray, and T.Grandison. Using Schematic

Mapping Techniques to synchronize virtual

machine logs. To Appear 4th International

Conference on Information Systems Secure (June

2011) - Proceedings to be forwarded to the Lecture

Notes in Computer Science-Springer Verlag edition

S. Thorpe, I. Ray, and T.Grandison. Enforcing Data

Quality Rules for Transformation mapping within

a synchronize virtual machine log cloud. To

Appear 4th International Conference on Information

Systems Secure (June 2011) - Proceedings to be

forwarded to the Lecture Notes in Computer

Science-Springer Verlag edition.

 P.Mell,T.Grance. NIST Definition of Cloud

Computing Retrieved from:

 http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf, September 2009.

Author Biographies

Sean Thorpe holds an M.S. and B.S. degrees

in Information Security and Computer Science
respectively from the University of

Westminster, London, UK in November 2002

and from the University of the West Indies,
Mona Campus Jamaica in November 2000. He

joined the University of Technology (UTECH)
as a Lecturer in Systems Security since January 2003.. Mr. Thorpe

has worked extensively as a System Programmer Analyst and

Oracle DBA, and now on study leave pursuing a PhD in Cloud
Forensics at UTECH since 2010.

10

Indrajit Ray is an Associate Professor at
Colorado State University since 2002. Prior he

was an Assistant Professor at the University of

Michigan Melbourne from 1997 to 2001. He
earned his PhD from George Mason

University, Virginia in summer 1997. He

obtained his B.S. Computer Science Degree
from Bengal Institute in India in 1984 and

then his M.S. from Jadvapur University in 1991, also in India. His

primary research interest is digital forensics, security policies, access
controls and intrusion detection

Abbie Barbir holds a PhD from Arizona State
University since 1991. Hecurrently heads the

OASIS Security Study group 17 responsible for

policyformations and standards for open access

environments. He has significant industry

experience within Nortel and the ITU. He is

currently a consultant to Bank of America

Tyrone Grandison is a Research Staff
Member at the Thomas J. Watson Research

Center. He received a B.S. degree in Computer

Studies (Computer Science and Economics)
from the University of the West Indies in 1997,

a M.S. degree in Software Engineering in 1998

and a Ph.D. degree in Computer Science from
the Imperial College of Science, Technology &

Medicine in London. He then joined IBM at

the Almaden Research Center in California, where he worked on
data privacy and security. In 2010, he joined the Global Healthcare

Transformation team as Program Manager for Core Healthcare

Services. Dr. Grandison is a Distinguished Engineer of the
Association of Computing Machinery (ACM), a Senior Member of

the Institute of Electrical and Electronics Engineers (IEEE), a

Fellow of the British Computer Society (BCS), has been recognized
by the National Society of Black Engineers (as Pioneer of the Year

in 2009), the Black Engineer of the Year Award Board (as Modern

Day Technology Leader in 2009 and Minority in Science Trailblazer
in 2010) and has received the IEEE Technical Achievement Award

in 2010 for "pioneering contributions to Secure and Private Data

Management”. He has authored over 70 technical papers and co-
invented over 20 patents.

