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ABSTRACT
De-identification of textual medical records is of critical im-
portance in any health informatics system in order to facili-
tate research and sharing of medical records. While statisti-
cal learning based techniques have shown promising results
for de-identification purposes, few such systems are publicly
available. It remains a challenge for practitioners to build
an accurate and efficient system as it involves a significant
amount of feature engineering, i.e. creation and examina-
tion of new features used in the system. A comprehensive
evaluation is needed to thoroughly understand the effects of
different feature sets and potential impacts of sampling and
their trade-offs between the often conflicting goals of preci-
sion (or positive predictive value), recall (or sensitivity), and
efficiency.

In this paper, we present the Health Information DE-iden-
tification (HIDE) framework and evaluate the open-source
software. We present an evaluation of various types of fea-
tures used in HIDE, and introduce a window sampling tech-
nique (only the terms within a specified distance from per-
sonal health information are used to train the classifier) and
evaluate its effect on both quality and efficiency. Our results
show that the context features (previous and next terms) are
particularly important and the sampling technique can be
used to increase recall with minimal impact on precision. We
obtained token-level label precision of 0.967, recall of 0.986
and F-Score of 0.977 when not including true negatives. The
overall HIDE system achieves token-level precision of .998,
recall of .999, and f-score of .999 on the previous i2b2 chal-
lenge task.
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1. INTRODUCTION
De-identification of medical records is of critical impor-

tance in any health informatics system in order to facilitate
research and sharing of medical records. Under the HIPAA
Privacy Rule1, Protected health information (PHI) is de-
fined as individually identifiable health information and is
subject to restrictions on access, use, and disclosure. Health
information is qualified as de-identified if it neither identifies
nor provides a reasonable basis to identify an individual and
is exempt from the above privacy restrictions. De-identifica-
tion systems focus on detecting and removing (or replacing)
PHI in the medical record resulting in a de-identified record.
De-identified data can be used for a variety of purposes such
as quality improvement, research, and teaching.

As a considerable amount of medical records resides in
textual forms such as clinical notes, SOAP (subjective, ob-
jective, assessment, patient care plan) notes, radiology and
pathology reports, an important task of de-identification is
to detect PHI references within medical text which can be
then replaced or removed.

CLINICAL HISTORY: 90 year old female with a history of B-
cell lymphoma (Marginal zone, SH-02-22222, 6/22/01). Flow

cytometry and molecular diagnostics drawn.

Figure 1: A Sample Pathology Report Section

Figure 1 shows a sample pathology report section with
personally identifying information such as age and medical

1Health Insurance Portability and Accountability Act
(HIPAA). http://www.hhs.gov/ocr/hipaa/



record number highlighted. It is necessary for the de-iden-
tification process to detect the personal identifiers from the
text and replace or remove them.

The main approaches for PHI detection from text can be
classified into rule-based or statistical (machine learning)-
based methods. Rule-based systems can be quite powerful,
but they lack the portability necessary for multiple insti-
tutions to quickly adopt a software package based on such
techniques.

The statistical learning techniques use a list of feature at-
tributes to train a classification model and classify the terms
in new text as either identifier or non-identifier. While it re-
quires manually annotated training data, it can be ported
to other domains or genres of text much more rapidly.

While several works studied statistical learning techniques
such as conditional random fields (CRF) for de-identification
purposes and shown promising results, few such systems are
publicly available. It remains a challenge for practitioners
to build an accurate and efficient system as it involves a
significant amount of feature engineering. A comprehensive
evaluation is needed to thoroughly understand the effects
of different feature sets and potential impacts of sampling
and their tradeoffs between the often conflicting goals of
precision (or positive predictive value), recall (or sensitivity),
and efficiency. Any medical de-identification system requires
high recall of PHI, but the precision must be acceptable. It
is possible to detect PHI with high precision in many types
of highly unstructured data, but the recall is sometimes low.

In this paper, we present a detailed study of various types
of features used in our learning based de-identification sys-
tem. We also present a window sampling technique to in-
crease performance and tailor the system for a particular
user’s precision and recall requirements. The paper builds
on top of the open-source Health Information DE-identifica-
tion (HIDE) system we developed at Emory [4, 5, 3], which
uses Conditional Random Fields (CRFs) as the underlying
machine learning technique.

It presents an extension of the features in the existing
HIDE system and a more thorough evaluation of different
feature sets and sampling techniques for CRF-based de-iden-
tification and the latest version of HIDE on gold standard
datasets. Our results show that the context features are
particularly important and the sampling technique can be
used to increase recall with minimal impact on precision.
The overall HIDE system achieves token-level precision of
.998, recall of .999, and f-score of .999 on the previous i2b2
challenge task.

The remainder of this paper is organized as follows. Sec-
tion 2 presents on overview of existing work on de-identifi-
cation systems. Section 3 presents the HIDE framework and
software. Section 4 describes the sequence labeling problem
and the various types of features used in HIDE. The fea-
tures can be classified into regular expression, affix (prefix
and suffix), context, and dictionary features. Section 5 intro-
duces a window sampling technique. Section 6 reports the
detailed evaluation results of the different feature sets and
sampling techniques. Further discussion and conclusions are
in Section 7.

2. RELATED WORK
This section briefly describes other de-identification sys-

tems and approaches. The most common approaches to de-
identification are based on rules and dictionaries or statisti-

cal learning techniques. HMS Scrubber [1] is an open-source
system implemented in Java that utilizes the header infor-
mation associated with a record, rules for detecting com-
mon PHI (e.g. dates), and a dictionary of common names
(and names associated with the institution). Any informa-
tion that matches is then removed from the record. An
alternative open-source system implemented in Perl using
similar techniques as the HMS Scrubber can be found in
[9]. This system is associated with PhysioNet [6]. The Phy-
sioNet webpage2 also includes a gold standard dataset of
nursing notes. We evaluate our system on this dataset in
Section 6. Rules based on local context and semantic lex-
icons were studied in [17]. The system builds rules based
on the surrounding terms and information gleaned from a
sematic lexicon to detect PHI.

An alternative approach that uses a dictionary of safe
(guaranteed non-PHI) terms and removes all terms that are
not in the list can be found in [2]. The Concept-Match
algorithm steps through the record replacing all standard
medical terms with the corresponding code, leaves all high
frequency (stop words) and removes all other terms leaving
a de-identified record. This technique has high recall, but
suffers from lower precision.

Other systems use machine learning techniques. The best
performing systems use a variety of features and use either
Support Vector Machine (SVM) [11], variations of decision
tree [16] or CRF [13] classifiers as their underlying statistical
learning frameworks.

Uzuner, et. al. [12] introduced the i2b2 datasets as a
gold standard for evaluating medical record de-identification
solutions. The best performing systems on this data (and
most similar to HIDE) was the Carafe system of Wellner,
et. al. [13]. Carafe also utilizes conditional random fields.
See [14] for more discussions of privacy and de-identification
techniques on electronic health records. We evaluate our
system on the i2b2 dataset in Section 6.

Anonymized View
Output:

Heterogeneous Private Data

Input:

Data Linking

Identifier Extraction

Identifier View

Anonymization

Figure 2: HIDE Conceptual Framework

3. HIDE
HIDE (Health Information DE-identification) [4, 3, 5] is a

framework for de-identifying both structured and unstruc-
2http://www.physionet.org/physiotools/deid/



tured data. This section gives a brief description of the
HIDE framework and the software implemented according
to the framework.

3.1 Conceptual Framework
HIDE consists of three major components: identifier ex-

traction, data linking, and de-identification and anonymiza-
tion. Figure 2 gives a graphical description of the conceptual
framework.

Identifier Extraction. The identifier extraction compo-
nent extracts the identifying information including HIPAA
identifiers as well as sensitive attributes from unstructured
(text) data. Note that in order to apply advanced data
anonymization techniques, HIDE can extract a much broader
set of information than existing de-identification systems
that typically focus on the set or a subset of HIPAA identi-
fiers.

Data Linking. In relational data, we assume each tuple
corresponds to an individual entity. This mapping is not
present in heterogeneous medical data repositories. For ex-
ample, one patient may have multiple pathology and lab
reports prepared at different times. In order to preserve pri-
vacy for individuals and apply statical de-identification in
this complex data space, the data linking component links
relevant attributes (structured or extracted) to each indi-
vidual entity and produces a person-centric representation
of the data. HIDE provides an interative process between
the identifier extraction and data linking components. Once
an identifier is detected it is assigned to an existing patient
in the system, and using the information for each patient
can be used to help extract more PHI from the text.

De-identification and Anonymization. Once the iden-
tifying attributes are extracted and linked to individuals,
they form a structured identifier view. This notion of iden-
tifier view allows application of advanced anonymization al-
gorithms that are otherwise not applicable to unstructured
data. Given an identifier view, the anonymization compo-
nent anonymizes the data using different privacy models, in-
cluding k-anonymization, l-diversity, or differential privacy.
Finally, using the resulting values from the anonymized iden-
tifier view, we can remove or replace the identifiers in the
original data.

This paper focuses on the underlying technologies of the
identifier extraction component in the framework. Section 4
gives more details of the underlying machine learning com-
ponent for identifier extraction. We refer the readers to [3]
for a thorough description of the HIDE framework.

3.2 Software
HIDE is a web-based application that utilizes the latest

web-technologies. HIDE is written in Python on top of
the Django3 web application framework. It uses Apache
CouchDB4 as the document storage engine. HIDE pro-
vides users (primarily honest brokers and de-identification
researchers) with the ability to either manually or automat-
ically label (annotate), de-identify, anonymize, and analyze
the data. HIDE provides a web-based annotation interface
(javascript) that allows iterative annotation of documents
and training of the classifier for detecting PHI. This allows
the user to quickly create training sets for the CRF classifier.

3http://www.djangoproject.com/
4http://couchdb.apache.org/

HIDE uses the CRFSuite [10] package for the underlying
CRF. This provides fast training and auto-labeling (Section
4) functionality in the system.

HIDE has been currently integrated into the caTIES5 de-
identification pipeline. The software package can be config-
ured to use HIDE as a de-identification option for pathology
reports in the caTIES database. HIDE can import data from
a variety of sources. The system is currently being imple-
mented and tested in real-world settings by multiple institu-
tions. More details can be found at the HIDE project6 and
code7 web pages.

4. SEQUENCE LABELING AND FEATURES
De-identifying medical text can be viewed as the often

encountered task of named entity recognition (NER) in nat-
ural language processing (NLP). One of the most successful
methods for NER is to cast it into a sequence labeling prob-
lem.

4.1 Sequence Labeling
Sequence labeling is the process of labeling each token in

a sequence with a label corresponding to features of the to-
ken in the sequence. One of the most common examples
of sequence labeling is part-of-speech (POS) tagging, where
each token in the sequence is labeled with its corresponding
part-of-speech. Detecting PHI in medical text is very simi-
lar, except that the labels correspond to whether or not the
term is (or is part of) a name, date, medical record number
(MRN), etc. If the term is not PHI, it is labeled with an
“O.”

CLINICAL HISTORY: <age>90</age> year old female with
a history of B-cell lymphoma (Marginal zone, <id>SH-02-
22222</id>, <date>6/22</date>/01). Flow cytometry and
molecular diagnostics drawn.

Figure 3: A Sample Marked Pathology Report Sec-
tion

Figure 3 shows an example pathology report with the PHI
surrounded by tags. Our task is to train the computer to
label the sequence of tokens in the pathology report with
the correct PHI labels corresponding to the tags. In order
to predict the correct label for a token it is necessary to
build features for each token that can be used to calculate
the probability of a label given the set of features. This
set of features (corresponding to and including the token)
are referred to as a feature vector. This sequence of feature
vectors is then used in the machine learning framework for
predicting PHI and for training the underlying classifier.

PHI extraction in HIDE consists of training and labeling
phases. In order for HIDE to automatically label the PHI in
the document it must first be trained on how to predict the
correct labels. The training phase consists of (1) tokenizing
the records in the gold-standard training set, (2) building
the feature vector for each token, and (3) constructing a
statistical model of the feature vectors corresponding to the
known labels. The labeling phase consists of (1) tokenizing
the record, (2) building the feature vector for each token, and
(3) predicting the correct label sequence given the feature
vector sequence.

5http://caties.cabig.upmc.edu/
6http://mathcs.emory.edu/hide/
7http://code.google.com/p/hide-emory



Label Token ALPHA? NUMBER? PREV WORD NEXT WORD PRE1 SUF1
O HISTORY 1 0 CLINICAL 90 H Y
age 89 0 1 HISTORY year 7 7
O year 1 0 age old y r
O old 1 0 year female o d

Table 1: Example subset of features in feature vectors generated from marked report section.

Regular Expression Name
^[A-Za-z]$ ALPHA
^[A-Z].*$ INITCAPS
^[A-Z][a-z].*$ UPPER-LOWER
^[A-Z]+$ ALLCAPS
^[A-Z][a-z]+[A-Z][A-Za-z]*$ MIXEDCAPS
^[A-Za-z]$ SINGLECHAR
^[0-9]$ SINGLEDIGIT
^[0-9][0-9]$ DOUBLEDIGIT
^[0-9][0-9][0-9]$ TRIPLEDIGIT
^[0-9][0-9][0-9][0-9]$ QUADDIGIT
^[0-9,]+$ NUMBER
[0-9] HASDIGIT
^.*[0-9].*[A-Za-z].*$ ALPHANUMERIC
^.*[A-Za-z].*[0-9].*$ ALPHANUMERIC
^[0-9]+[A-Za-z]$ NUMBERS LETTERS
^[A-Za-z]+[0-9]+$ LETTERS NUMBERS
- HASDASH
’ HASQUOTE
/ HASSLASH
‘~!@#$%\^&*()\-=_+\[\]{}|;’:\",./<>?]+$ ISPUNCT
(-|\+)?[0-9,]+(\.[0-9]*)?%?$ REALNUMBER
^-.* STARTMINUS
^\+.*$ STARTPLUS
^.*%$ ENDPERCENT
^[IVXDLCM]+$ ROMAN
^\s+$ ISSPACE

Table 2: List of regular expression features used in
HIDE

The Conditional Random Field (CRF) framework [7] was
developed for the sequence labeling task. CRFs are one of
the best machine learning techniques for sequence labeling
and hence are very good at detecting PHI in text. HIDE
uses the CRF as its underlying statistical learning frame-
work. A CRF takes as input a sequence of feature vectors,
calculates the probabilities of the various possible labelings
(the type of PHI for each token in the sequence) and chooses
the one with maximum probability. The probability of a la-
beling is a function of the feature vectors associated with the
tokens. More specifically, a CRF is an undirected graphical
model that defines a single log-linear distribution function
over label sequences given the observation sequence (feature
vector sequence). The CRF is trained by maximizing the
log-likelihood of the training data.

4.2 Features
We now describe the set of features used to construct the

feature vectors in the HIDE system. Table 1 shows example
feature vectors based on the sample marked report. The
features can be categorized into regular expression, affix,
dictionary, and context features. We empirically study the
effects of the various features in Section 6.

Regular Expression Features. Regular expression fea-
tures are those features that are generated by matching reg-
ular expressions to the tokens in the text. The value for a
given regular expression is active (specifically the value for
the feature is set to 1 in the CRF framework) if the token
matches the regular expression. These featuers are useful
for detecting medical record numbers and phone numbers.

The regular expression features are fairly standard and sim-
ilar to those in [13]. Table 2 contains the list of all regular
expression features used in HIDE.

Affix Features. The prefix and suffix of a token are affix
features. HIDE uses the prefixes and suffixes of length one,
two and three for each token. E.g., if the token is “diagnosis”
the affix features of PRE1_d, PRE2_di, PRE3_dia, SUF1_s,
SUF2_is, and SUF3_sis would be active. These features can
be useful for detecting certain classes of terms that have
common prefixes or suffixes.

Dictionary Features. HIDE can use any number of dic-
tionaries. If a phrase (or token) is encountered that matches
any of the entries in the dictionary a feature indicating that
each token is contained in the dictionary is added to the
feature vector. Suppose that “John” is in a dictionary file
called male_names_unambig. If “John” occurs in the text,
then the feature IN_male_names_unambig would be active in
the feature vector associated with the token “John.” HIDE
currently uses all of the dictionaries from the PhysioNet de-
identification webpage.

Context Features. Previous words, next words, and oc-
currence counts are examples of context features. Sibanda
and Uzuner [11] demonstrate that context features are im-
portant features for de-identification. HIDE includes the
previous and next four tokens and the number of occur-
rences of the term scaled by the length of the sequence in
each feature vector

5. SAMPLING
The overwhelming number of “O” tags biases the classi-

fier into predicting “O” as the label. A simple technique for
removing some of this bias is to remove the number of “O”
in the training set. This will increase the recall of most la-
bels at the cost of decreasing precision (positive predictive
value). Gardner and Xiong [3] investigated the use of cost-
proportionate rejection sampling to increase the accuracy
of de-identification using Naive Bayes classifiers. Many of
the “O” labels between real labels can be removed while still
retaining the information necessary for the classifier to de-
cide when an entity is going to appear in the text. Window
sampling is based on this idea.

5.1 Random O-Sampling
We use random O-sampling as a baseline to compare to

our window sampling method. Random O-samping keeps
every non-“O” label and selects every “O” label with prob-
ability p. The intuition behind this method is a version of
cost-proportionate rejection sampling [15], except that the
order of the training data is always preserved and the non-
“O” labels are always selected. This method decreases the
number of “O” labels the classifier sees and thus, the classi-
fier will choose the “O” label less often with the overall effect
of increasing recall. Section 6 shows the effects of random
O-sampling.



True /PredB-ageB-dateB-doctorB-hospitalB-idB-locationB-patientB-phoneI-dateI-doctorI-hospitalI-idI-locationI-patientI-phoneO Total Prec Rec F1

B-age 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1.0 0.667 0.8
B-date 0 1919 0 1 5 0 0 0 0 0 0 0 0 0 0 6 1931 0.996 0.994 0.995

B-doctor 0 2 1043 2 0 4 0 0 0 1 0 0 0 0 0 18 1070 0.985 0.975 0.980
B-hospital 0 1 2 663 1 2 0 0 0 0 0 0 0 0 0 7 676 0.987 0.981 0.984

B-id 0 1 1 1 1136 0 0 0 0 0 0 0 0 0 0 4 1143 0.987 0.994 0.990
B-location 0 3 3 5 0 104 1 0 0 0 0 0 0 0 0 3 119 0.920 0.874 0.897
B-patient 0 0 7 0 0 3 230 0 0 0 0 0 0 0 0 5 245 0.996 0.939 0.966
B-phone 0 0 0 0 2 0 0 55 0 0 0 0 0 0 0 1 58 1.0 0.948 0.973
I-date 0 0 0 0 0 0 0 0 3462 0 0 2 0 0 0 42 3506 0.997 0.987 0.992

I-doctor 0 0 0 0 0 0 0 0 0 2500 2 0 2 0 0 78 2582 0.974 0.968 0.971
I-hospital 0 0 0 0 0 0 0 0 2 4 1889 0 6 0 0 28 1929 0.991 0.979 0.985

I-id 0 0 0 0 1 0 0 0 2 0 2 602 0 0 0 21 628 0.711 0.959 0.816
I-location 0 0 0 0 0 0 0 0 0 14 4 0 196 2 0 28 244 0.951 0.803 0.871
I-patient 0 0 0 0 0 0 0 0 0 17 0 0 0 513 0 8 538 0.996 0.954 0.974
I-phone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 24 244 1.0 0.902 0.948

O 0 1 3 0 6 0 0 0 8 31 10 243 2 0 0 0 304 NA NA NA

Table 3: Confusion matrix showing token label accuracy using all features
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Precision 0.562 0.745 0.749 0.788 0.792 0.811 0.81 0.944 0.948 0.956 0.958 0.961 0.962 0.962 0.963
Recall 0.623 0.832 0.839 0.847 0.853 0.868 0.868 0.967 0.969 0.975 0.977 0.982 0.982 0.982 0.984
F-Score 0.591 0.786 0.792 0.816 0.821 0.838 0.838 0.955 0.958 0.965 0.967 0.971 0.972 0.972 0.973

d r rd a ad ra rad c cd ac acd rc rac racd rcd

Figure 4: Figure showing dictionary, affix, regular expression, and context features in order of increasing
importance (from all but one result).

5.2 Window Sampling
In window sampling we keep every non-“O” label and a

window of size k around that label. The intuition behind
this method is similar to the random O-sampling except that
it treats all “O” labeled terms not “near” PHI as noise to
the classifier as we are more interested in detecting PHI
than non-PHI. Section 6 shows that the window sampling
technique can be quite useful for tweaking the precision and
recall for the HIDE system.

6. EVALUATION AND EXPERIMENTS
We performed all experiments on a machine with 8 cores

at 2.2ghz and 16 gb of ram.

Datasets. Our datasets consist of the PhysioNet and the
i2b2 datasets. These are some of the only publicly avail-
able (with some licensing restrictions) datasets for evalu-
ating medical de-identification solutions. The i2b2 dataset
consists of example pathology reports that have been re-
synthesized with fake PHI. The reports are somewhat struc-
tured and have sentence structure. The PhysioNet data con-
sists of re-synthesized nursing notes that are very sporadic
and contains almost no sentence structure.

For the figures in the experimental section we constructed
10-fold cross-validation sets for the i2b2 and PhysioNet datasets.
The cross-validation set for i2b2 is composed of the 220 re-
ports in the i2b2 testing dataset8 The cross-validation set

8We note that this provides a smaller training set than in
the i2b2 challenge.

for Physionet is composed of 163 records that are a subset
of the full PhysioNet dataset.

Metrics. All numbers are reported for token-level accu-
racy and exclude all true negatives (those tokens that are
correctly labeled as “O”). We report the standard precision
(positive predictive value), recall, and f-score. True pos-
itives (TP ) are those PHI which are correctly labeled as
PHI, false positives (FP ) are those tokens that are labeled
as PHI when they should be labeled as “O,” true negatives
(TN) are those tokens correctly labled as “O” and false neg-
atives (FN) are those tokens that should be labeled as PHI
but are marked as “O.” Precision (P ) or the positive pre-
dictive value is defined as P = TP/(TP + FP ). Recall (R)
or sensitivity is defined as R = TP/(TP + FN) and f-score
(F ) is defined as F = 2(P · R)/(P + R). It is worth noting
that specificity is defined as TN/(TN + FP ). We do not
report specificity because the non-identifying attributes are
dominating compared to the identifying attributes so speci-
ficity will be always close to 100% which would not be very
informative.

Training Details. The CRF is trained using the CRFSuite
application with the L-BFGS [8] algorithm. The L-BFGS
algorithm stops when the log-likelihood on the training data
improves by no more than 10−5 from the previous iteration.

6.1 Effects of Features
We performed the feature experiments on the i2b2 cross-

validation sets. The feature experiments show all subsets of
regular expression, affix, dictionary, and context features.
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Figure 5: Effect of random O-sampling selection
probability and a fixed history size of 4 on the i2b2
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filtering on i2b2 cross-validation data. History size
of 10 gives a window of 20 tokens.
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Figure 7: Effect of random O-sampling selection
probability and a fixed history size of 4 on the Phy-
sioNet cross-validation data
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Figure 8: Effect of window history size for window
filtering on PhysioNet cross-validation data.

Table 3 shows the token-level confusion matrix for labeling
the PHI in the i2b2 dataset using all features. We note that
the confusion matrix includes those tokens that are spaces.
This only has an effect on the I-label entries and does not
have significant effect on the precision and recall numbers.
The results are quite good for the majority of PHI, as can
be seen by the large values along the diagonal of the confu-
sion matrix. The most commonly missed PHI are the I-id,
which correspond to missing the continuation of a medical
record number, e.g. detecting <id>1234</id>-123 instead
of <id>1234-123</id>.

Figure 4 shows the overall term-level results for all sub-
sets of the features. Our experiments indicate that the most
important features for this task in increasing order are: dic-
tionary, affix, regular expression, and context features. Us-
ing only the context features the classifier achieves f-score
of 0.955. This verifies our intuition and the results in [11].
The regular expression features are the second most effec-
tive. The affix features are third. Readers may notice that
the rcd slightly outperforms the racd feature set, but we be-
lieve this to not be significant. The least important features

were the dictionary features. This is likely due to the fact
that many of the terms in the text that are in the dictionar-
ies are not PHI.

6.2 Effects of Sampling
We performed experiments with varying probability for

random-O sampling9 and various history sizes for window
sampling.

Figures 5 and 6 show the effects of the random O-sampling
with various selection probabilities and the effects of the win-
dow sampling on the i2b2 cross-validation dataset. When
the selection probabillity is small the system is biased to-
ward recall and when p is large the precision and recall begin
to converge.

Figures 7 and 8 show the effects of the random O-sampling
with various selection probabilities p and the effects of the
window sampling on the PhysioNet cross-validation dataset.
The curves follow similar paths as in the i2b2 data, but it

9In order to keep some of the context information we al-
ways keep a history size of four and randomly sample the
remaining “O” labeled feature vectors.



True \ PredB-ageB-dateB-doctorB-hospitalB-idB-locationB-patientB-phoneI-dateI-doctorI-hospitalI-idI-locationI-patientI-phoneO Total Prec Rec F1
B-age 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1.0 0.667 0.8
B-date 0 1930 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1931 0.996 0.999 0.998

B-doctor 0 1 1061 0 1 3 0 0 0 0 0 0 0 0 0 4 1070 0.985 0.992 0.988
B-hospital 0 2 3 663 1 4 0 0 0 0 0 0 0 0 0 3 676 0.982 0.981 0.981

B-id 0 0 1 1 1140 0 0 0 0 0 0 0 0 0 0 1 1143 0.990 0.997 0.994
B-location 0 3 7 11 0 96 0 0 0 0 0 0 0 0 0 2 119 0.906 0.807 0.853
B-patient 0 0 4 0 0 3 235 0 0 0 0 0 0 0 0 3 245 1.0 0.959 0.979
B-phone 0 0 0 0 2 0 0 55 0 0 0 0 0 0 0 1 58 1.0 0.948 0.973
I-date 0 0 0 0 0 0 0 0 3500 0 0 0 0 0 0 6 3506 0.998 0.998 0.998

I-doctor 0 0 0 0 0 0 0 0 0 2543 0 0 2 0 0 37 2582 0.986 0.985 0.985
I-hospital 0 0 0 0 0 0 0 0 2 6 1831 0 0 0 0 90 1929 0.984 0.949 0.966

I-id 0 0 0 0 1 0 0 0 0 0 2 616 0 0 0 9 628 0.720 0.981 0.830
I-location 0 0 0 0 0 0 0 0 0 14 12 0 192 0 0 26 244 0.980 0.787 0.873
I-patient 0 0 0 0 0 0 0 0 0 8 0 0 0 523 0 7 538 1.0 0.972 0.986
I-phone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 24 244 1.0 0.902 0.948

O 0 1 1 0 6 0 0 0 6 8 16 240 2 0 0 0 280 NA NA NA

Table 4: Results on the i2b2 training and testing challenge data.
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Figure 9: Training Time (seconds) vs. History Size
on i2b2 dataset

should be noted that because of the highly sporadic nature
of the nursing notes the recall is poor without a very small
selection probability or window size. The convergence of
precision and recall can can be seen in Figure 7, which in-
dicates that sampling be stopped around 0.2. These results
show that by decreasing the window size the classifier can
detect all PHI. Neamatullah, et. al [9] report precision of
0.967 and recall of 0.749 on the full PhysioNet dataset of
1836 notes. We were only able to import a fraction of these
from the site, but we believe our system would have similar
results to those we have reported here on the full corpus. At
a similar level of recall .972 we obtain precision of .255 with
a history size of 4. This shows that the window sampling
allows users to tweak the system to perform as well as hand
tailored rule-based systems for recall.

6.3 Comparison to i2b2 Challenge
When training on the 669 document training set and test-

ing on the 220 document testing set from the i2b2 challenge
dataset we obtained token-level label (excluding “O”) preci-
sion of 0.967, recall of 0.986 and F-Score of 0.977.

Table 4 presents the token-level confusion matrix. This
result is slightly better than the Carafe system [13] which re-
ported a f-score of 0.975 when counting only true positives.
If the Carafe system uses the feature sets described here,
then theoretically it should acheive very similar or equiv-
alent results. When counting true positives and negatives
(without including spaces as tokens) as reported in the i2b2
challenge we obtain precision of 0.998, recall of 0.999, and
f-score of 0.999.

6.4 Performance
The HIDE system has integrated the CRFSuite [10], which

is one of the fastest CRF implementations. The training
time for the full 669 report training set with all features was
51 minutes, 39 seconds. For this experiment we simultane-
ously trained all ten CRF models using the cross-validation
training sets for each history size and averaged the values.
The training time to build all ten models for the PhysioNet
data was 24 seconds. The training time to build all ten mod-
els for the i2b2 cross-validation dataset with no sampling was
12 minutes, 24 seconds (744 seconds).

Figure 9 shows the training time vs. window history size
training time on the i2b2 dataset. The training time in-
creases with the history size. Setting the correct sampling
rate can allow users to optimize HIDE for their different
speed, precision, and recall requirements.

7. DISCUSSION AND CONCLUSION
The HIDE system has proven to perform quite well on the

i2b2 dataset and can achieve high recall on the highly un-
structured PhysioNet dataset when using the window sam-
pling technique. Encoding more specialized features could
prove useful for de-identifying extremely unstructured data.
Modifying the dictionary for institution specific tasks may
also be of utility. The HIDE system is one of the fastest
CRF-based de-identification systems due to the integration
of the CRFSuite package10.

Many de-identification systems could make use of the header
information that is usually stored with each individual re-
port. HIDE currently has preliminary support for HL7 Ver-
sion 2, which contains the header information (usually much
of the PHI) in a machine readable format. We will continue
to enhance HIDE by using the “dictionary like” information
in the header and constructing more meaningful non-local
features.

We have described the HIDE framework and real-world
software. We have demonstrated that context features are
the most important for de-identification as well as shown
the effect of a variety of features. We described the window
sampling technique for tweaking the time, precision, and
recall performance of the system.
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