
Information Assurance and Security Letters.

ISSN 2150-7996 Volume 2 (2011) pp. XXX-XXX

© MIR Labs, www.mirlabs.net/iasl/index.html

Dynamic Publishers, Inc., USA

The Virtual Machine Log Auditor

Sean Thorpe
1
, Indrajit Ray

2
 Tyrone Grandison

3
 Abbie Barbir

4

1 Faculty of Engineering and Computing, University of Technology,

Kingston, Jamaica

sthorpe@utech.edu.jm

2 Department of Computer Science, Colorado State University,

Fort Collins, USA

indrajit@cs.colostate.edu

3 IBM Research,

York Town Heights, New York, USA

tyroneg@us.ibm.com

4 Bank of America,

abbie.barbir@bankofamerica.com

Abstract: With the increased use of compute clouds, forensic

science requires tools that enable investigation and discovery.

The Virtual Machine Log Auditor (VMLA) is one such tool. It is

a graphical tool that allows a cloud computing forensic

investigator to create a timeline of virtual machine (VM)

hypervisor log events that were gathered from one or more

physical operating system (OS) sources. This paper describes

the design, implementation and use of the VMLA. The VM

timestamp hypervisor log information visualized by the VMLA

tool refers to VM hosted physical OS Modification, Access and

Creation (MAC) times, copied from the storage area network

(SAN) disks. The paper also gives an overview on how to

improve the existing prototype.

Keywords: Cloud, Log, Auditor, Forensic, hypervisor.

I. Introduction

Cloud computing services have become an attractive model

for accessing the traditional shared pool of network resources

[1]. The buzz around clouds arguably has created more

interest than its predecessors of Grid and Mainframe

computing because of the on-demand economies of scale

benefits from these rental service models. In the same breadth

the potential for criminal activity is ripe, and presents

significant concerns for the IT forensics community,

especially as it relates to law enforcement.

Existing tools are available that aid a computer forensic

investigator in analyzing SAN storage media and the

overlying file systems. The literature however shows very

little evidence anywhere on the use of cloud forensic auditing

tools to support investigations within the virtualization layers,

i.e. meta abstraction layer, that runs within the existing SAN

of your data center.

Arguably some of the likely cloud adopters to watch are

Encase [5], the Sleuth Kit [4], and the Forensic Toolkit [2].

They focus mainly on evidence recovery, i.e. recovering

deleted or hidden data. Beyond simple searching and indexing

functionality, these tools however have limited abilities to

further analyze the data that can be recovered from cloud

storage, regardless of it being in the private or public domain.

Searching for keywords, file types, or file hashes might be

sufficient when trying to locate incriminating material on an

existing physical system, but clearly insufficient when trying

to reconstruct virtual machine operating system (OS) or

hypervisor events that have taken place on a cloud system.

The VMLA allows a forensic investigator to construct and

view a timeline of virtual machine log events based on the

information found in the system under cloud digital

investigation.

In the current prototype, the timeline consists of log events

that come from VM hypervisor sources running Xen Citrix

and VMWare essx3i operating on both Windows 7 and Linux

Mandriva 10 test platforms. MAC times are retrieved from the

hypervisor system, application, error and security logs.

Currently, an investigator needs to analyze the output from

these hypervisor log sources separately and make notes to

correlate events. The hypervisor logs are copied from the VM

host source via the file transfer protocol (FTP) method to an

Oracle11g target evidence server for further examination and

analysis [11,12]. In due course, the VMLA can incorporate

events from multiple VM host sources into a single list of

time-sorted entries.

The VMLA is the only tool that lets a user import hypervisor

log events from distinct OS sources and order them according

to time values without the need for setting up special

monitoring. This paper is motivated by prior work done in

[10,13]. Furthermore, it is the only tool that lets a user

generate a hierarchy of hypervisor log events: starting with

events at discrete times that were retrieved from the

hypervisor FTP log server sources.

 2

II. Background and Related Work

As mentioned earlier, the current set of related tools include

the Encase tool [6], the Forensic Toolkit [2] and the Sleuth Kit

[4].

The main functionality of the Encase tool [6], from Guidance

Software, lies in the retrieval of data from a physical system to

locate specific data easily. Encase provides the functionality

to sort file information by various fields, which includes

timestamps. It is also possible to retrieve and search within

log files, such as system logs, and log data from security

software and application logs [6]. It should be noted that there

is no intent to use VMLA at this time to combine data from

different sources across time zones as one cannot synchronize

NTP servers for which you as the administrator or investigator

have no control over the temporal or logical ordering of the

log evidence collected [14].

Access Data's Forensic Toolkit (FTK) [2] focuses primarily

on securing information from an operating system and then

providing the ability to locate and examine specific files. Files

can be sorted by their attributes, including the file timestamp

values. There are extensive search capabilities, as well as a

large number of known file formats whose contents can be

displayed and searched using FTK.

Brian Carrier's Sleuth Kit [4] also has the ability to view file

system events. The focus lies primarily in the recovery of the

information as opposed to its analysis. Basic timelines of the

file system events are generated with the mactime tool, which

generates a sorted list of modification, access, and creation

(MAC) timestamp hypervisor log events. One approach the

investigator can use to organize events with the Autopsy

forensic browser is to generate annotated bookmarks for

events. At this time, it is not possible to group the hypervisor

log events into a detailed hierarchy and perform complex

searches on them.

The FileList Pro tool from New Technologies [9] can create

timelines of file activity on a system. A user can choose to sort

the files and the information associated with them by various

timestamps. Timelines can be created for file access, creation,

modification, and deletion for DOS and Windows systems. A

user is not able to use the tool to introduce log events from

other unknown sources or group events together outside of the

test LAN.

The nFX open Security Platform from netForensics [8]

provides a mechanism to gather event information from

various sources of a distributed network. The events are

normalized and synchronized and displayed real-time for

intrusion detection purposes. Furthermore, statistical analysis

techniques may be utilized for event correlation. The events

are gathered via agents that need to be installed on the systems

from which to gather data. There are a large number of

devices supported directly by the product, and a \Quick

Connect" feature provides the ability for custom agents for

other data sources.

Given that agents need to be installed and active on all

systems that are monitored, the usefulness for nFX for

forensic purposes is limited. When the platform is deployed

on a system that needs to be investigated it may well be used

for a forensic investigation. It is not possible to group events

into hierarchies to graphically build a timeline of events. Also,

only those events are captured through some kind of logging

or reporting mechanism by the system or application are

accessible. Events from MAC times for example cannot be

captured in this fashion.

III. The Design of the VMLA

The VMLA is an open-sourced graphical tool written in Java

that allows the VM forensic investigator to import various

hypervisor log event files from the VM host operating system.

The logs are then ordered and classified into one or more

timelines of events. The organization of events and timelines

are hierarchical tree views that allow the investigator to

display and hide specific VM log events. This is intended to

support relevant aspects of the cloud investigation one at a

time. This is further supported by the capability to filter VM

hypervisor log events based on start and ending times. These

VM log events serve as a unified data structure to bring

together potential VM log forensic evidence from different

OS sources. It is now possible to combine data from those

sources and analyze them within a single framework. Given

the Exabyte and Zettabyte storage limits of the production

SAN, the VMLA by assumption is only engaged in snapshot

hypervisor log evidence compilation as the preferred data

reduction method [10].

The design objectives for VMLA are as follows:

• Arbitrary Generation of VM log events from the specified

local VM host operating systems data sources

• Enabling the grouping of hypervisor log events together

into logical groups recursively

• Seamless filtering of the VM log data that is displayed

• Enabling the easy location of specific VM log events

• Providing an intuitive interface

• Being a platform independent implementation

The development of the VMLA was punctuated with several

design challenges. Among them are fast and efficient data

structures, efficient importing of arbitrary VM logs, and

intuitive user interface design.

A. The VM Log Event data Structure

Choosing an appropriate data structure was our first hurdle.

The Java Development Kit (JDK) in version 1.4 offers several

data structure classes. As the anticipated size of the data set

was in the hundreds of thousands of events, the ability for a

rapid search and retrieval of data items is important. Also, the

project assumed that events could be added to the data

structure at ten thousand to one hundred thousand at a time.

This necessitated a quick build time of the data structure.

Given that that the log events needed to be sorted, it was

decided that any data structure would require a run time of

O(log(n)) for any of its operation (lookup, add, remove),

which would result in an overall build-time of O(n log n). JDK

1.5 offers a TreeSet class, which is an implementation of a

balanced search tree. Due to the mappings required for a

custom TreeModel class for the JTree GUI component, one of

the lookup operations needed could only be run in O(n) time,

which resulted in a build-time of O(n
3
) due to meta layer

abstraction run time overheads.

To implement a custom data structure that utilizes

Adelson-Velskii and Landis (AVL) trees [2], a variant of a

balanced binary search tree was adapted. The main data

structure of the VMLA is the Log event. There are two types

How to Format Your Paper for JIAS 3

of log events in the VMLA: atomic events (primitive) are the

events that are directly imported from the host OS system i.e.

File MAC times, logs, etc. VM Complex log events are events

that are comprised of atomic events or other complex events,

that is they act as a container for other VM log events from

which it derives some of its properties. There is an abstract

class TimeEvent, which defines common fields and methods

of the two kinds of events, such as the start time, name,

description, and parent event fields and methods to retrieve

them. The class AtomicEvent further adds a reference to the

source of the event. The source contains information about

from where the event was imported and what the time

granularity is.

The class ComplexEvent adds fields for an end time and its

child log events. The start time of a complex log event is

defined as the smallest start time among its children, while the

end time is the largest end time of the children (for atomic

events, the end time can be considered the same as the start

time). That is, whenever child log events are added or

removed from the complex log event its start and end times

potentially change. Note that a VM complex log event does

not have a source associated with it. Instead, the sources of its

children define its "\source" from the corresponding SAN disk

cluster. The child events of a complex event are organized in a

balanced binary AVL search tree. The sorting key for the

children is their start time combined with a unique identifier

so that the events are sorted by their start time. Events that

have the same start time and are siblings are sorted in an

arbitrary fashion (actually, an event that was created earlier is

considered "\smaller" because its unique identifier will be

smaller. Complex events that are children of a VM complex

log event in turn may contain children, which are also

organized in the AVL tree, and so on. Figure 1 depicts the

structure of a VM log complex event.

Thus a VM log timeline is nothing but a VM log complex

event as a root that contains the hierarchy of VM log events

with its children. VMLA uses a subclass of the

java.swingx.JTree class. Here is a summary treatment of

the behavior of the VM Complex log Event class container

properties. The structure of a VM complex log event place

timelines in a tree view. Complex events are collapsible

nodes, whereas atomic events are the leaf nodes. This is

analogous to a file systems browser with directories and files.

A complex event must at least contain one child, which means

that at the lowest level of the hierarchy there must be an

atomic event. The exception is an empty timeline, where the

complex event serves as the root node of the tree view.

Figure 1. Hierarchial Structure of a VM hypervisor Log

Complex Event

B. Importing VM Log Events

One of the essential features of the VMLA is its ability to

generate log events from multiple physical OS data source.

This is similar to the \Quick Connect" feature of the nFX

Open Security Platform [9], but given that data is not gathered

in real-time, one has the ability to gather more types of data,

such as file MAC times or other information that cannot be

actively monitored by agents installed on a VM host system.

VMLA's import capabilities can be dynamically extended by

supplying a Java class that implements our VMLog

InputFilter interface and generates log events from the desired

data source. The fact that VMLA dynamically loads the VM

log input filter classes at start-up means that a user can extend

the functionality without having to re-compile the VMLA

classes. It is sufficient to compile the new input filter class and

put it into a special directory.

The capability to create your own input filters to generate VM

log events is one of the most desirable features of the VMLA.

A brief discussion of the Java InputFilter class that extends

this functionality to VMLA is discussed here. The use of

VMLogInputFilter class was adapted to implement an input

filter. The interface requires the following methods:

public abstract class VMLogInputFilter {

public abstract Source init(String location, Component

parent);

public abstract AtomicEvent getNextEvent();

public abstract FileFilter getFileFilter();

public abstract String getName();

public abstract String getDescription();

public abstract long getExactCount();

public abstract long getTotalCount();

public abstract long getProcessedCount();

}

Classes that implement the InputFilter interface must provide

an implementation for the required methods. init() will

initialize the data source (e.g. open a file and gather

information about the source) and return an object describing

the source. getNextEvent() will return the next event that

comes from an initialized source. If there is no next event,

then null is returned. This allows loops such as:

while ((event = filter.getNextEvent()) != null){

/* process the event */

}

The getFileFilter method tells the tool how (and if) to filter

files or file names when the file chooser dialog is opened (e.g.

*.txt" for text files). It may return null if no such filtering is

desired.

The getName() and getDescription methods return a name and

a description for the filter, respectively. The name will appear

in the filter type selection when importing, while the

description will be used in future versions to give the user

more feedback when selecting a filter.

The three methods getExactCount(), getTotalCount(), and

getProcessedCount() are used for progress bar updates. If the

filter knows how many events will be generated, then it

returns that number as the exact count. Otherwise, the exact

count should return 0 and the total count can be returned,

which represents the amount of data that is processed (number

of lines or bytes, for example).

 4

The methodgetProcessedCount() will then return the amount

of data (of the total count) that has already been processed by

the filter during the import process. The next step is to explain

how the VMLogInputFilter class works, which may serve as a

proof-of-concept for other filter classes.

The VMLogInputFilter class processes data similar to the fls

tool used by Sleuth Kit [4]. It is required that the VMLog

output to be in machine text readable format. The init method

is fairly straightforward. The attempt to open the input stream

is specified by the file name and onsuccess which returns a

new Source object or null otherwise:

public Source init(String filename) {

try {

 file_input = new BufferedReader(

 new FileReader(filename));

}

 catch (IOException ioe) {return null;}

return new Source("Log filter",

filename,Source.GRANULARITY_SEC);

}

Each line of the log output can create between one and three

separate events, depending on whether the timestamp are the

same or differ. For this, one adopts the FIFO queue called

logevent queue in which the extra log events resulting from

the processing of the line to be read in subsequent

getNextEvent() calls. Thus the algorithm for processing lines

and returning events is as follows:

• If logevent queue is empty, read the next line from the

input. Else dequeue and return the next logevent.

• Return null is end of file is reached.

• Process the line and compare the log timestamps.

• If more than one log event is created, queue all but one.

• Return the remaining logevent.

The following is pseudo-Java code of the getNextEvent()

method, glossing over unimportant parts:

public AtomicEvent getNextEvent() {

if (event_queue.isEmpty()) {

read the line from the input stream

if (line == null) return null;

fields = line.split("\\|");

// get timestamps, one has second granularity

// but need to convert to ms

long mtime =

Long.decode(fields[12]).intValue()*1000;

long atime =

Long.decode(fields[11]).intValue()*1000;

long ctime =

Long.decode(fields[13]).intValue()*1000;

String name = fields[1];

String description = "User: " + fields[7] +

"\n" + "Group: " + fields[8] + "\n" +

"Mode: " + fields[5];

if ((mtime == atime) && (mtime == ctime))

return new AtomicEvent("MAC " + name,

description, new Timestamp(mtime));

if (mtime == atime) {

event_queue.add(

new AtomicEvent("MA. " + name,

description, new Timestamp(mtime)));

return new AtomicEvent("..C " + name,

description, new Timestamp(ctime));

}

/* and so on for all the MAC combinations ...*/

}

else

return (AtomicEvent) event_queue.removeFirst();

}

The progress bar methods are implemented as follows:

because one does not have an exact count of the number of

VM log events that will be generated when one initializes the

filter, getExactCount() returns 0. The total count is simply the

size of the log file system in bytes, and the processed count the

byte position of the open file handle:

public long getExactCount() {

return 0;

}

public long getTotalCount() {

return file_input.length();

}

public long getProcessedCount() {

return file_input.getFilePointer();

}

C. The VM Graphical User Interface

Java offers several options for producing GUIs. Among them

are the Abstract Windows Toolkit (AWT) and more recent

Swing classes. Briefly considered was the Eclipse project,

whose Simple Window Toolkit (SWT) allows Java GUI

functionality to be handled by OS-native APIs. Eventually

Eclipse was discontinued from consideration because of its

poor performance when building a Tree object. Swing proved

to be the optimum choice for GUI design because of its native

GUI objects such as the tree list, an object ideally suited for

the hierarchical display of events such as those dealt with in

VMLA. A conscious thought while designing the GUI was to

make it as easily understandable as possible. Because the

general audience of the program may include law

enforcement professionals with little prior background in

computers, the program should be as simple as possible to

approach and understand. With this thinking in mind the GUI

was constructed to imitate the functionality of other pervasive

applications, such as Microsoft's Windows Explorer, so as to

take advantage of the user's innate understanding of user

interface functions.

How to Format Your Paper for JIAS 5

Figure 2. VMLA Graphical hierarchial tree log event

timeline window

The timeline on the right represents the unmodified

hypervisor timestamp logs retrieved from the local VM ftp

server along with descriptions of the log event activity as

adopted from the VM host OS source. The timeline on the left

contains a drop down menu selection log events list (i.e.

Application, System, Security, and Error Logs). In the left

lower panel, the current system access date for these evidence

target server hypervisor logs.

IV. Features of the VMLA

The initial prototype of VMLA that is described in this paper

concentrates on a small set of basic features that are important

when constructing a timeline of log events. They can be

divided into three categories: managing log events via the

GUI, maintaining the integrity of VM log digital evidence,

and being able to quickly locate log events.

A. Managing Events

Being able to manage log events efficiently is the most

important feature of VMLA. After hypervisor log events from

one source have been imported into a single timeline, a user

has several options to group them into complex events. New

complex events can only be created from a selection of other

events (atomic and/or complex): the selected events are

moved into a newly created complex event, which, in turn, is

inserted into the timeline at the parent of the node(s) highest in

the hierarchy among the selected events. Once a complex

event exists, events can be transferred to and from it via drag

and drop. This can be within the same timeline or between two

timelines. Furthermore, events may be transferred using cut

and paste actions. Nodes in the tree that represent a complex

event may be expanded or collapsed, allowing the user display

and hide information as needed.

A user can also create empty timelines and then populate it

with log events, or s/he can create a new timeline from

selected events of another one. This way, a user can make a

hypothesis and then look for log events supporting it while at

the same time building the timeline for it. Timelines are

displayed either within a single JTabbedPane or in two such

panes next to each other. The arrangement of timelines in

tabbed panes allows the user to easily switch view between

timelines. The double-pane model lets the user view timelines

next to each other and a drill down functionality to analyze a

hypervisor log event based on the OS machine source user as

seen in Figure 3.0. This is especially beneficial when

constructing a timeline of events from different sources: one

side is used to construct the VM log event hierarchy, and the

other side to search for the relevant VM log events supporting

the timeline under construction.

This mode is also ideal for moving these VM hypervisor log

events between timelines via drag and drop. The single-panel

mode offers more viewing space for the tree view and may be

helpful when grouping log events within the same timeline.

Figure 3. Hypervisor Log Analytical center

B. Maintaining Forensics Integrity

The final design challenge faced by VMLA is it’s

conformance to the special needs as potential cloud digital

forensics software. Data utilized by forensic programs are

often presented in a court of law. As a result of this usage, the

handling of data by the software is subject to certain

restrictions to prevent unauthorized manipulation. One

specific example of this is how a single source of information

such as output from the VM Host OS hypervisor log provides

thousands of megabytes of potential data evidence. An

unscrupulous investigator could remove from the data set

biased log evidence.

As the developer the approach was to have the VMLA

program use every single event from a log source file or none

at all. An investigator would not be allowed to delete from the

project any log events. The solution to this was to create an

unseen "orphan" log timeline that contains any "deleted" log

events. The log events themselves are not deleted from the

project but merely shifted into the orphan log timeline. In this

way the log events can be moved out of the field of view but

without compromising the integrity of the log source of

evidence.

Edit functionality also affects the source integrity of a data set.

Take for example a log event being cut and never pasted into a

timeline. If this happens the program closes and the VM log

event stored in the cut buffer is lost. In order to avoid this,

special care is taken when the program is saving to first dump

the contents of the cut buffer into the orphan log timeline

before writing out the data.

C. Queries

VMLA uses Log query objects to match against VM

hypervisor log events. Queries can then be used to filter and

locate events. During filtering only those log events that

match the query are displayed. When locating log events the

(first) event(s) that match the query are displayed in their

current context.

 6

Currently, queries only support a limited keyword search in

combination with a time interval in which the VM log events

must occur. The keyword search allows the use of regular

expressions as supported with the Java's String.matches()

method to determine a match. The keyword is initially padded

with wildcard (.*) matchers at the start and end, but the

keyword itself can contain Java regular expression characters.

This also means that certain characters have to be escaped for

a literal match.

All the logic needed to perform query matches is contained in

the Query class. More sophisticated types of queries may thus

be easily added to VMLA by either modifying the Query

class, or by sub-classing it and overriding its matches()

method. Some of the query features that are planned for future

releases are: search by VM Log event source, end time, and

type (once a typing system for VM Log events exists).

V. Using the VMLA

To date the VMLA has been used to detect temporal

hypervisor log inconsistencies within the timelines of a

digital investigation as supported by the University research

environment of the authors. Based on these inconsistencies

inference methods have been developed to this end to

evaluate these inconsistencies. The experimental rules and

results can be further explored in a recent journal article [10].

In a second article [13], the VMLA is used to support incident

analysis within the SAN, by providing evaluations on how to

formulate hypothesis with the log file stamps for a potential

cloud investigation.

VI. Conclusions and Future Work

The virtual machine log auditor is a prototype tool that allows

the forensic investigator to import VM hypervisor log events

from distinct OS sources, and let him group these log events

together into complex log events. This grouping supports a

hierarchy of VM log events. The primary goal of this tool is

to assist the investigator in creating hypothesis about what

VM events took place on the physical OS by way of these

hypervisor sources.

 For future work the plan is to introduce a machine learning

step that intelligently filters out unimportant events reducing

the amount of log events that need to be kept in the GUI data

structures and in main memory. Other expected prototype

improvements include indexing on hypervisor log searches,

and usability task improvements.

References

[1] P. Mell and T.Grance. “NIST Definition of Cloud

Computing V15”, July 10, 2009. Retrieved from

http://csrc.nist.gov/groups/SNS/cloud-computing/

[2] AccessData Corp. Forensic Toolit.

http: //www.accessdata.com/Product04_Overview.htm.

[3] G.M. Adelson-Velskii and E.M. Landis. An algorithm for

the organization of information. Dokladi Akademia

Nauk SSSR, 146(2):1259{1262, 1962.

[4] Brian Carrier. Sleuthkit and Autopsy forensic browser.

http://www.sleuthkit.org.

[5] Guidance Software. Encase forensic software.

http://www.guidancesoftware.com.

[6] Guidance Software. EnCase Enterprise Edition Detailed

Product Description.

http://www.guidancesoftware.com/corporate/whitepape

rs/downloads/EEEDeta%iled.pdf, July2004.

[7] HoneyNet Project. HoneyNet Scan 15.

http://www.honeynet.org/scans/scan15, May 2001.

[8] netForensics Inc. nFX

Open Security Platform

http://www.netforensics.com/nfxosp.asp.

[9] New Technologies Inc. FileList Pro Computer Timeline

Software.

http://www.forensics-intl.com/filelist.html

[10] Sean Thorpe , Indrajit Ray. “File Timestamps in a

Cloud Digital Investigation.” To Appear in the

Journal of Information Assurance and Security , Vol 7,

March 2012 issue.

[11] Sean Thorpe, Indrajit Ray, Tyrone Grandison.

“Enforcing Data Quality Rules for a Synchronized VM

Log Audit Environment using Transformation Mapping

Techniques". The Proceedings of the 4th Intl

Conference on Computational Intelligence in Security

for Information Systems, Torremolinos, Malaga, Spain.

June 8-10, 2011.

[12] Sean Thorpe, Indrajit Ray , Tyrone Grandison. "Use of

Schema Associative Mapping for synchronization of the

Virtual Machine Audit Logs". The Proceedings of the

4th International Conference on Computational

Intelligence in Security for Information Systems,

Torremolinos, Malaga, Spain. June 8-10, 2011.

[13] Sean Thorpe , Indrajit Ray. “Detecting Temporal

Inconsistency in Virtual Machine Activity Timelines.”

To Appear in the Journal of Information Assurance and

Security, Vol 7, March 2012 issue.

[14] Sean Thorpe, Indrajit Ray , Indrakshi Ray , Tyrone

Grandison. Towards a Formal Temporal Log Model for

the Virtual Machine synchronized cloud computing

environment.” Proceedings of the Journal of Information

Assurance and Security, Volume 6, No 2. 2011, March

2011.

How to Format Your Paper for JIAS 7

Author Biographies

Sean Thorpe holds an M.S. and B.S. degrees in

Information Security and Computer Science

respectively from the University of Westminster,
London, UK in November 2002 and from the

University of the West Indies, Mona Campus

Jamaica in November 2000. He joined the University
of Technology (UTECH) as a Lecturer in January

2003 with responsibility for teaching System

Security at the undergraduate level. Mr. Thorpe has worked extensively in the
IT industry since 1995 as a System Programmer Analyst and Oracle DBA

before joining academia. He is a 2009 recipient of the Fulbright Visiting

faculty Scholarship award to Harvard University, where he explored
collaborative research work in the area of Security Metrics. He is also the

2009 winner of the OOPSLA Educational Symposium Award for his

innovative computer science teaching methods, and the recent 2011American
National Science Foundation (NSF) awardee for Caribbean based research in

the area of Cloud Computing. His specific research interest includes cloud

forensics, and security policies. In 2010 he started his PhD in Computer
Science.

Indrajit Ray is an Associate Professor at Colorado
State University since 2002. Prior he was an

Assistant Professor at the University of Michigan

Melbourne from 1997 to 2001. He earned his PhD
from George Mason University, Virginia in summer

1997. He obtained his BSc Computer Science

Degree from Bengal Institute in India in 1984 and
then his MSc from Jadvapur University in 1991, also

in India. His primary research interest is digital forensics, security policies,

access controls, and intrusion detection.

Tyrone Grandison is a Research Staff Member at

the Thomas J. Watson Research Center. He received

a B.S. degree in Computer Studies (Computer
Science and Economics) from the University of the

West Indies in 1997, a M.S. degree in Software

Engineering in 1998 and a Ph.D. degree in Computer
Science from the Imperial College of Science,

Technology & Medicine in London. He then joined

IBM at the Almaden Research Center in California, where he worked on data
privacy and security. In 2010, he joined the Global Healthcare

Transformation team as Program Manager for Core Healthcare Services. Dr.

Grandison is a Distinguished Engineer of the Association of Computing
Machinery (ACM), a Senior Member of the Institute of Electrical and

Electronics Engineers (IEEE), a Fellow of the British Computer Society

(BCS), has been recognized by the National Society of Black Engineers (as
Pioneer of the Year in 2009), the Black Engineer of the Year Award Board (as

Modern Day Technology Leader in 2009 and Minority in Science Trailblazer

in 2010) and has received the IEEE Technical Achievement Award in 2010
for "pioneering contributions to Secure and Private Data Management”. He

has authored over 70 technical papers and co-invented over 20 patents.

Abbie Barbir holds a PhD from Arizona State

University since 1991. He currently heads the OASIS
Security Study group 17 responsible for policy

formations and standards for open access

environments. He has significant industry experience
within the telecomm sector including Nortel and the

ITU. He is currently a consultant to Bank of

America.

	I. Introduction
	II. Background and Related Work
	III. The Design of the VMLA
	A. The VM Log Event data Structure
	B. Importing VM Log Events
	C. The VM Graphical User Interface

	IV. Features of the VMLA
	A. Managing Events
	B. Maintaining Forensics Integrity
	C. Queries

	V. Using the VMLA
	VI. Conclusions and Future Work

