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Abstract — The interpretations of conditionals and condi-
tional inference are often disputed. The classic logic con-
ditional called material implication can easily be proven
to be invalid, and the conditional inference rule Modus
Ponens represents a tautology that becomes invalid in the
face of contrary evidence from realistic scenarios. The
foundations of conditionals and conditional inference seem
plagued with problems and also seem unable to realistically
model causal relationships in the world around us. Now in-
troduce the concepts of ignorance and uncertainty into the
framework and it seems to get even fuzzier because the tra-
ditional tools of logic or probabilistic conditional inference
can no longer be applied. This paper introduces a condi-
tional inference operator that explicitly incorporates igno-
rance and uncertainty, thereby making it suitable in situa-
tions of partial ignorance and imperfect information.

Keywords: Modus Ponens, Implication, Causality, Belief
theory, Conditional inference, Subjective logic, Probability

1 Introduction

Conditionals are propositions like “If the reserve bank
does not reduce the interest rate, the recession will con-
tinue” or “If it rains, Michael will carry an umbrella”
which are of the form “IF z THEN y” where 2 marks the
antecedent and y the consequent. An equivalent way of
expressing conditionals is through the concept of implica-
tion, so that “If it rains, Michael will carry an umbrella™
is equivalent to “The fact that it rains implies that Michael
carries an umbrella™.

When making assertions of conditionals with antecedent
and consequent, which can be evaluated as TRUE or
FALSE propositions, we are in fact evaluating a proposition
which can itself be considered TRUE or FALSE. A condi-
tional is of course not always true, and it is quite common
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to hear utterings like: ““I don’t believe that the recession
will continue if the reserve bank does not reduce the inter-
est rate” or “Is it really true that Michael will carry an
umbrella if it rains?”” which are questioning the truth of the
conditionals.

The importance of conditionals is evidenced by the fact
that both logic and probability calculus have mechanisms
for handling the evaluation of conditionals. In logic, Modus
Ponens (MP) is the tool of choice. It is used in any field
of logic that requires deduction to take place. In proba-
bility calculus, Bayes rule for conditional evaluation is the
tool of choice. Both frameworks exclude one important in-
gredient. The treatment of uncertainty. As real systems
are normally riddled with uncertainty, neither of the above
mentioned frameworks can be effectively used in real sys-
tems. Thus, there is a need for an uncertainty framework
with facilities for reasoning about conditionals.

Subjective logic[4] is a logic of uncertain beliefs about
propositions, is related to belief theory, and is compati-
ble with binary logic and probability calculus. Subjective
logic contains operators that correspond to standard logic
‘AND’, ‘OR” and “NOT’ as well as the non-standard oper-
ators ‘consensus’ and ‘discounting’. An online demonstra-
tion of these operators can be found at [2].

This paper describes a new operator called conditional
inference and highlights the usefulness of subjective logic
over binary logic and probability calculus because it is pos-
sible to model situations where the antecedent, the conse-
quent and the conditional itself are uncertain. Section 2 de-
tails our representation of uncertain beliefs, while section 3
discusses the belief metric called opinion which is used for
representing beliefs about propositions. Section 4 describes
the conditional inference operator of subjective logic, and
section 5 describes examples that show how the conditional
inference operator can be applied. Section 6 provides a dis-
cussion on the confusion surrounding the incarnations of
conditional inference in standard logic and probability cal-
culus. Section 7 summarises the contribution of this paper.



2 Representing Uncertain Beliefs

The first step in applying the Dempster-Shafer belief
model [8] is to define a set of possible states of a given
system, called the frame of discernment denoted by ©. The
states in © are assumed to be exhaustive and mutually ex-
clusive, and will therefore be called atomic states.

The powerset of ©, denoted by 2©, contains all possible
unions of the atomic states in © including © itself. It is
assumed that only one atomic state can be true at any one
time. If a state is assumed to be true, then all superstates
are considered true as well.

An observer who believes that one or several states in
the powerset of ® might be true can assign belief masses
to these states. Belief mass on an atomic state z € 2° is
interpreted as the belief that the state in question is true.
Belief mass on a non-atomic state z € 2° is interpreted as
the belief that one of the atomic states it contains is true, but
that the observer is uncertain about which of them is true.

In general, a belief mass assignment (BMA) denoted by
m is defined as a function from 2° to [0, 1] satisfying:

Z m(z) =1.
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Each subset z € 2° such that m(z) > 0 is called a focal
element of m. A BMA where m(©) = 0 is called dogmatic.
Given a particular frame of discernment and a BMA, the
Dempster-Shafer thery [8] defines a belief function b(z).
In addition, subjective logic [4] defines a disbelief func-
tion d(z), an uncertainty function u(x), a relative atomicity
function a(z/y) and a probability expectation E(z). These
are all defined as follows:
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The relative atomicity function of a subset z relative to
the frame of discernment © is simply dentoted by a(x).

Subjective logic applies to binary frames of discernment,
so in case a frame is larger than binary, a coarsening is re-
quired to reduce its size to binary. Coarsening focuses on
a particular subset x C ©, and produces a binary frame of
discernment X containing x and its complement z. The
powerset of X is 2X = {z,Z, X} which has 21Xl —1 =3

elements when excluding @. We will first describe sim-
ple coarsening which is described in [4] and subsequently
describe normal coarsening which has not been described
elsewhere. Let the coarsened frame of discernment be
X = {z,z} where T is the complement of z in ©. We
will denote by b, d,, u, and a, the belief, disbelief, un-
certainty and relative atomicity functions of z on X.

According to simple coarsening, these functions are de-
fined as:

by 2 b(z) , @)
dy £ d(z) (8)
Uy £ u(z), 9)
az £ [E(z) - b(x)]/u(z) . (10)

This coarsening is called “simple” because the belief,
disbelief and uncertainty functions are identical to the orig-
inal functions on ©. The simple relative atomicity function
on the other hand produces a synthetic relative atomicity
value which does not represent the real relative atomicity
of z on © in general.

Next, the normal coarsening method is described. Ac-
cording to normal coarsening, the belief, disbelief, uncer-
tainty and relative atomicity functions are defined as:

(11)
de £ d(z) , (12)
ug = u(z) - (E(z) - b(z) - a(z)u(z))/(1 - a(@)) ,

(13)
as 2 a(z) (14)

(15)

For E(z) < b(z) + a(z)u(z):

by £ b(), (16)
d, = d(z) + (b(z) + a(z)u(z) — E(z))/a(z), (17)
uy 2 u(z) — (b(z z)u(z) — E(z))/a(z), (18)
az = a(z) . (19)

This coarsening is called “normal” because the relative
atomicity function represents the actual relative atomicity
of z on ©. The relative cardinality of an element in a binary
frame of discernment will always be 2, whereas the normal
relative atomicity reflects the true relative atomicity of an
element relative to the original frame of discernment.



The belief, disbelief and uncertainty functions on X for
normal coarsening are in general different from the belief,
disbelief and uncertainty functions on © so that b(z) < by,
d(z) < dg, and u(z) > u,. The interpretation of the ten-
dency of normal coarsening to decrease the uncertainty and
increase the belief and disbelief functions is that belief mass
that contribute to the uncertainty function on © can have a
varying character of uncertainty . When considering for ex-
ample the frame of discernment © = {z;,z,, 23} and fo-
cusing on the state 2y Uz, then the belief mass m(x2 Ux3)
has less character of uncertainty and should therefore con-
tribute less to the uncertainty function u,, s, than the be-
lief mass m(0).

3 TheOpinion Space

For the purpose of having a simple and intuitive repre-
sentation of uncertain beliefs we use a 3-dimensional met-
ric called opinion but which will contain a 4th redundant
parameter in order to allow a more compact definition of
the conditional inference operator.

It is assumed that all beliefs are held by individuals and
the notation will therefore include belief ownership. Let
for example agent A express his or her beliefs about the
truth of state 2 in some frame of discernment. We will de-
note A’s belief, disbelief, uncertainty and relative atomicity
functions as b2, d2, u4 and a2 respectively, where the su-
perscript indicates belief ownership and the subscript indi-
cates the belief target.

Definition 1 (Opinion) Let © be a binary frame of dis-
cernment containing states z and z, and let mg be the BMA
on O held by A where b2, d4 and u2 represent A’s belief,
disbelief and uncertainty functions on z in 2 respectively,
and let o represent the relative atomicity of  in ©. Then
A’s opinion about z, denoted by w?, is the tuple:

AL 1A A A A
wz _(br7 dm? uz? am)‘

The three components (b, d;, u,) satisfy

by +dy +u, =1 (20)
so that one is redundant. As such they represent nothing
more than the traditional Bel (Belief) and PI (Plausibility)
pair of Shaferian belief theory, where Bel = band Pl = b+
u. However, using (Bel, PI) instead of (b, d, u) would have
produced unnecessary complexity in the definition of the
operators in subjective logic. The probability expectation
of an opinion is expressed as:

E(wy) = by + azu, (21)

It can be shown that E(w,) = E(z) holds for both simple
and normal coarsening. Eq.(20) defines a triangle that can
be used to graphically illustrate opinions as shown in Fig.1.

U nceriai nty

Probability axis

Figure 1: Opinion triangle with w,, as example

As an example the position of the opinion w, =
(0.40, 0.10, 0.50, 0.60) is indicated as a point in the
triangle. The horizontal base line between the belief and
disbelief corners is called the probability axis. As shown
in the figure, the probability expectation value E(x) = 0.7
and the relative atomicity a(z) = 0.60 can be graphically
represented as points on the probability axis. The line join-
ing the top corner of the triangle and the relative atomic-
ity point is called the director. The projector is parallel to
the director and passes through the opinion point w,. Its
intersection with the probability axis defines the probabil-
ity expectation value which otherwise can be computed by
the formula of Eq.(6). Opinions situated on the probability
axis are called dogmatic opinions, representing traditional
probabilities without uncertainty. The distance between an
opinion point and the probability axis can be interpreted as
the degree of uncertainty. Opinions situated in the left or
right corner, i.e. with either b =1 or d = 1 are called abso-
lute opinions, corresponding to TRUE or FALSE states in
binary logic.

Opinions have an equivalent represention as beta prob-
ability density functions (pdf) denoted by beta(a, )
through the following bijective mapping:

(bxa dmuz; az) —
(22)

beta (‘ii +2a,, 2= 42(1- aw)) .

This means for example that an opinion with u, = 1
and a; = 0.5 which maps to beta (1, 1) is equivalent to a
uniform pdf. It also means that a dogmatic opinion with
uz = 0 which maps to beta (b,n, d,n) where n — oo is
equivalent to a spike pdf with infinitesimal width and infi-
nite height. Dogmatic opinions can thus be interpreted as
being based on an infinite amount of evidence.



4 Conditional Inference

In this section we describe the conditional inference op-
erator for subjective logic. It will become evident that MP
in binary logic and probability assessment using conditional
probabilities are a special case of this operator.

The problem with the interpretation of conditional propo-
sitions like ‘IF z THEN g’ is that when the antecedent is
false it is impossible to assert the truth value of the condi-
tional. To resolve this issue, classic logic stipulates that any
conditional with a false antecedent must evaluate to true,
i.e. the conditional is seen as truth-functional according to
the truth table of material implication. However, this po-
sition is untenable in practice because there are examples
of false conditionals with false antecedent and true conse-
quent. As a result modern text books state for example that
for material implication “the best thing is to take its truth
table as defining its intended meaning™ [10] p.263, which
basically says that it is a purely theoretical concept with no
practical meaning. This will be discussed in section 6 be-
low. What is needed is a complementary conditional that
covers the case when the antecedent is false. One that will
do the job is the conditional ‘IF NOT = THEN y’. Now,
if the antecedent z is false, it is possible to determine the
validity of ‘IF NOT z THEN y’.

Each conditional now provides a part of the picture and
can therefore be called sub-conditionals. Together these
sub-conditionals form a complete conditional expression
that provides a complete description of the connection be-
tween the antecedent and the consequent. Complete condi-
tional expressions have a two-dimensional truth value be-
cause they consist of two sub-conditionals that both have
their own truth value.

We adopt the notation y|z to express the sub-conditional
‘IF z THEN y’, (this in accordance with Stalnaker’s [9]
assumption that the probability of the proposition 2 implies
y is equal to the probability of y given x) and y | to express
the sub-conditional ‘IF NOT z THEN y” and assume that it
is meaningful to assign opinions (including probabilities)
to these sub-conditionals. We also assume that the belief
in the truth of the antecedent z and the consequent y can
be expressed as opinions. We can then state the following
definition.

Definition 2 (Conditional Inference) Let ©x = {z,T}
and Oy = {y,y} be two frames of discern-
ment with arbitrary mutual dependence. Let
Wz = (bfwdz:umaz)v Wylz = (bylzcadylzauylzcaaylz)
and wy|z = (byjz, dyz, Uy |z, ay|z) bE an agent’s respective
opinions about z being true, about y being true given that
2 is true and about y being true given that «x is false. Let
Wyllz = (by||z>dy|z»Uy|z» Gy||) bE the opinion about y
such that:
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Then wy, is called the condltgonal inference opinion of
wg by wy|, and wyz. The opinion w,,|,, expresses the belief
in y being true as a function of the beliefs in 2 and the two
sub-conditionals y|z and y|Z. The conditional inference
operator is a ternary operator, and by using the function
symbol ‘@’ to designate this operator, we define wy, =
wz © (wylwawy\i)-

Justification

The expressions for conditional inference seem quite
complex, and the best justification can be found in its ge-
ometrical interpretation in the triangle of Fig.1.

Uncertainty

yix
.\ Belief

Disbelief

Figure 2: Example conditional inference sub-triangle

The opinions of the two sub-conditionals define a sub-
triangle within which the opinion of the consequent must be
located. In Figure 2 the opinions of the sub-conditionals are
for example wy|, = (0.90, 0.02, 0.08, 0.50) and wy|z; =
(0.40, 0.52, 0.08, 0.50), and the sub-triangle they define
appears shaded. Now let for example the opinion about the
antecedent be w, = (0.00, 0.38, 0.62, 0.50). The opinion
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Figure 3: Example from online demo of the conditional inference operator[2]

of the consequent w,, = (0.40, 0.21, 0.39, 0.50) can
then be obtained by mapping the position of the antecedent
w, in the main triangle onto a position that relatively seen
has the same belief, disbelief and uncertainty components
in the sub-triangle.

Figure 3 shows the same example using the online demo
of subjective logic [2]. Here the opinion about the an-
tecedent be w, is shown in the leftmost triangle. The
opinions about the two sub-conditionals w, |, and w5 are
shown in the middle triangle, and the opinion about the con-
sequent wy|,, is shown in the rightmost triangle.

This example is particularly simple because the sub-
triangle is equal-sided. This is due to the fact that the two
sub-conditionals have equal uncertainty component. It is
however perfectly possible to let the two sub-conditional
opinions have different uncertainty components in which
case the sub-triangle no longer will be equal-sided. It is also
possible to let the opinion about the sub-conditional y|Z ap-
pear to the right of the opinion about the sub-conditional
ylz in which case the sub-triangle will be flipped around
so that the mapping from the antecedent to the consequent
goes to the opposite side of the sub-triangle. It is also possi-
ble that the sub-triangle is reduced to a line when the angle
of the line between the two sub-conditional opinion points
is steeper than the left and right sides of the triangle. The 9
different cases in Def.2 cover the various geometrical pos-
sibilities. It would take too long to provide an explanation
for all cases, and we will explain Case | which is when the
sub-triangle is reduced to a line.

e Case I
We know from probability calculus that

p(y) = plylz)p(z) + p(y|Z)p(T) - (23)

We require the conditional inference operator to be
compatible with this formula so that we can write

E(wyllz) = E(wylz)E(wz)"'E(wy\i)E(wf) -(24)

The relative atomicity of y is assumed to be a constant,
so that the following holds:

Gy = dy|a
= yjz (25)
=0yz -
It is then possible to express E(w,,) on the form:
E(@ylz) = byllz + ayllatiy)iz - (26)

By substituting the expressions for the probability ex-
pectation values in Eq.(26) the expressions for b
and u,, emerge. The expression for d
by solving by”w + dy”z + Uy, =1.

yllz

y||lz EMErges

The best way to be convinced by the soundness of Def.2
is simply to try the online demo at [2].

5 Example: Michael’sUmbrella

This section describes a simple scenario that illustrates
how the conditional inference operator can be applied.

A simple man, named Michael, lives six months of the
year in England and the other six months in Australia.
Michael experiences very different weather in each location
and this is reflected in the way he uses his umbrella.



5.1 Michae in England

In England, it often rains, and when it does not
rain the sun is never too hot. If it rains, then Michael
usually carries an umbrella, and if it does not rain he usu-
ally does not carry an umbrella. We define the propositions:

z : ‘It rains’
y : “‘Michael carries an umbrella’

yle :‘IFitrains THEN Michael carries an umbrella’

y|z : ‘IF it does NOT rain THEN Michael carries an
umbrella’

yllz : “Michael carries an umbrella given the opinion

about whether it rains’
Michael’s English friend Edward has the following opin-
ions about the sub-conditionals:
wglgward = (0.9, 0.0, 0.1, 1)
@7)
w];l%ward = (0.0, 0.9, 0.1, 1)

If one day Edward observes that it is not raining, so that
whdward — (01, 0, 1), then Edward can infer that
Michael probably does not carry an umbrella, expressed by
wEl‘li;”ard = (0.0, 0.9, 0.1, 1). Indeed, by looking out the
window as Michael walks to the bus stop, Edward sees his
friend without umbrella.

Assume that statistical data from the weather bureau in
England indicates that it rains 50% of the time in England,
and that Edward trusts this data to be correct. Edward can
use this to estimate the likelihood of Michael carrying an
umbrella at any given time. The opinion that it rains can
thus be set to wrdvard = (0.5, 0.5, 0, 1), so that the
opinion that Michael carries an umbrella any particular day
when no other weather info can be obtained is wfldward =

|z
(0.45, 0.45, 0.10, 1).
5.2 Michad in Australia

In Australia it sometimes rains, and when it does not rain
the sun can be very hot. If it rains, then Michael usually
carries an umbrella. When it does not rain he sometimes
carries an umbrella to protect his skin from the sun, but
not always, in fact it is completely uncertain whether he
carries an umbrella when it does not rain. We use the same
propositions as in the English example.

Michael’s Australian friend Andrew has the following
opinions about the sub-conditionals:

whndre = (0.9, 0.0, 0.1, 3)
(28)
whndew = (0.0, 0.0, 1.0, 3)

If one day Andrew observes that it is not raining, so
that windrew = (0, 1, 0, 1), what can Andrew in-
fer from this? He applies the conditional inference func-
tion, and concludes that he is completely uncertain as to
whether Michael carries an umbrella or not, expressed by

w;}”“wdfew = (0.0, 0.0, 1.0, 1). This type of conclusion
cannot be inferred neither in binary logic nor in probability
calculus.

Assume that statistical data from the weather bureau in
Awustralia indicates that it rains 5% of the time in Australia,
and that Andrew trusts this data to be correct. Andrew can
use this to estimate the likelihood of Michael carrying an
umbrella at any given time. The opinion that it rains can
thus be set to wandre™ = (0.05, 0.95, 0, 3), so that the
opinion that Michael carries an umbrella any particular day
when no other weather info can be obtained is w‘;“drew =

ll=
(0.045, 0.000, 0.955, 3).

6 Discussion

Conditional inference demands some sort of necessary
connection between antecedent x and the consequent y,
which for example material (or indicative) implication ig-
nores. Material implication denoted as 2 — y has the same
truth table as, and is therefore logically equivalentto Z V y.

The idea of having a causal connection between the an-
tecedent and the consequent can be traced back to Ram-
sey [7] who articulated what has become known as Ram-
sey’s Test: To decide whether you believe a conditional,
provisionally or hypothetically add the antecedent to your
stock of beliefs, and consider whether to believe the con-
sequent. By introducing Ramsey’s test there has been a
switch from truth and truth-functions to belief and whether
to believe which can also be expressed in terms of proba-
bility and conditional probability. This idea was articulated
by Stalnaker [9] and expressed by the so-called Stalnaker’s
Hypothesis as: p(IF z THENy) = p(y|z). Stalnaker’s
Hypothesis is for example not consistent with the truth-
functional interpretation of conditionals. For example when
considering a standard pack of 52 playing cards we have
p(kinglace) # p((NOT ace) v king) because p(king|ace) =
0 whereas p((NOT ace) V king) = p(NOT ace) = 12.

According to Bayes rule the conditional probability of
y|z is equal to the probability of z A y divided by the prob-
ability of z, provided that the latter is not zero. Stalnaker’s
Hypothesis thus equates the probability of conditionals with
classic conditional probability.

However, Lewis [5] argues that conditionals do not have
truth-values and that they do not express propositions. In
mathematical terms this means that given any propositions
x and y, there is no proposition z for which p(z) = p(y|z),
so the conditional probability can not be the same as the
probability of conditionals. Without going into detail we
believe in Stalnaker’s Hypothesis, and would argue against
Lewis by simply saying that “IF z THEN Y™ is equivalent
to “y|=”, and that this expresses a sub-conditional proposi-
tion with a truth value defined in case z is true, and unde-
fined in case z is false.

Our approach is similar to that of conditional event
algebras[3] where the set of events e.g. z, y in the prob-



ability space is augmented to include so-called class condi-
tional events denoted by y|z. The primary objective in do-
ing this is to define the conditional events in such a way that
p((y|z)) = p(y|x), that is so that the probability of the con-
ditional event y|x agrees with the conditional probability of
y given z. There are a number of established conditional
event algebras, each with their own advantages and disad-
vantages. In particular, one approach[1] used to construct
them has been to employ a ternary truth system with values
true, false and undefined, which corresponds well with the
belief, disbelief and uncertainty components of opinions.

One explanation why conditionals have caused so much
confusion is that most researchers have tried to de-
scribe causal relationships by using conditionals with one-
dimensional truth. Our interpretation and explanation
of conditional expressions is that they need two sub-
conditionals to form a complete causal relationship.

MP is a sub-case of our definitions. Conditional infer-
ence in subjective logic is equivalent to MP in case for ex-
ample wy|, = w, = (1.0, 0.0, 0.0, 0.5) which is equiva-
lent to y|z and z being both TRUE. It can then be inferred
that w, = (1.0, 0.0, 0.0, 0.5) which is equivalent to y be-
ing TRUE. In this regard it is worth mentioning McGee [6]
who argues that counter-examples to MP exist. We argue
that those arguments are no longer valid for the generalised
MP described here because it allows the possibility of con-
ditionals to be wrong by allocating an arbitrary amount of
uncertainty to their truth value.

Probabilistic conditional inference is also a sub-case of
our definitions. In probability calculus the conditionally
inferred probability of y can be expressed according to
Eq.(23). Conditional inference in subjective logic is equiv-
alent to probabilistic conditional inference when wy |, wy|z
and w, are all dogmatic, in which case w, will also be dog-
matic, and Eq.(23) can be applied directly.

By using the mapping between opinions and beta pdfs
described by Eq.(22) it is also possible to base conditional
inference on antecedents and conditionals expressed in the
form of beta pdfs, which further contributes to making our
approach more general.

7 Conclusion

The conditional inference operator described here repre-
sents a generalisation of the binary logic Modus Ponens rule
and of probabilistic conditional inference. The advantage of
our approach is that it is possible to take uncertainty and
ignorance about the antecedent and the conditionals into
account when analysing conditional inference and see the
effect it has on the result. We see this work as a step for-
ward in order to provide Shaferian belief theory with much
needed operators. It also provides a bridge between belief
theory on the one hand and binary logic and probability cal-
culus on the other.
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