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Abstract— Crowd computing leverages human input in order 
to execute tasks that are computationally expensive, due to 
complexity and/or scale. Combined with automation, crowd 
computing can help solve problems efficiently and effectively. 
In this work, we introduce an elasticity framework that 
adaptively optimizes the use of human and automated software 
resources in order to maximize overall performance. This 
framework includes a quantitative model that supports 
elasticity when performing complex tasks. Our model defines a 
task complexity index and an elasticity index that is used to aid 
in decision support for assigning tasks to respective computing 
elements. Experiments demonstrate that the framework can 
effectively optimize the use of human and machine computing 
elements simultaneously. Also, as a consequence, overall 
performance is significantly enhanced. 
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I.  INTRODUCTION 
Crowd computing leverages the input of a crowd of online 

users [1, 2] to collaboratively solve complex problems. 
Humans and machines are seen as programmable 
computational units capable of executing tasks; both require 
seamless interactions even though their requirements may 
differ [3]. In this paper, we aim at finding the optimal 
interplay between machine computing elements (MCEs) and 
human computing elements (HCEs). We propose an elastic 
computing framework, a system that leverages both MCEs 
and HCEs, through a uniformed interface, in order to 
optimally solve a complex task [3]. Our work investigates 
three main research questions: 

• R1 – When human and machine elements are capable 
of performing the same task, is there a general model 
that can define and evaluate their respective 
performance outcomes simultaneously? 

• R2 - Can experimentation in a specific domain, such as 
face recognition, uncover the most appropriate, shared 
evaluative attributes that have cross-domain 
applicability?   

• R3 - Can the specific performance variations in real-
life experimentation enhance our overall understanding 
and ultimately lead to a more generalized elastic 
model? 

 

 To address these questions, we devise an elastic model 
and supporting architecture that governs the provisioning of 
MCE’s, HCE’s or both (hereinafter referred to as Elastic 
Computing Elements (ECEs)) given a specific task. The 
algorithms will use the elasticity model to ascertain the 
complexity of the task and the current operating 
environment and then proactively enforce constraints on its 
successful completion. The main idea is to extract the 
elasticity attributes of a certain task and use these attributes 
to orchestrate the use of HCEs and MCEs.  Our work differs 
from other related projects in the fact that we focus on 
situations where the task for humans and for machine 
elements are exactly the same.  Related projects focus on a 
variety of tasks for humans and machine elements where 
humans and machines might address distinct tasks.   
 To evaluate the effectiveness of our proposed 
framework, we consider a face recognition task. Face 
recognition techniques have been extensively used in 
security and law enforcement applications such as post-
event analysis, shop lifting, suspect tracking and forensic 
crime scene investigation [4]. Despite the rapid progression 
in the area and the development of face recognition 
techniques, successful face recognition still faces several 
challenges; these include the capability to discern the same 
person when faced with variation in illumination, pose, 
image quality and background clutter in another image of 
the same person. Other factors such as the availability of 
well-defined recognition or matching criteria and nature or 
type of user input also affect the face recognition process 
[4]. As such, for R2 and R3, the face recognition domain is 
effective to understand factors that affect human and 
software elements differently.   

II. RELATED WORK 
Crowdsourcing approaches have been studied in a 

variety of related projects. Crowdsourcing has been used to 
harness large bodies of human resources to generate data for 
use in several systems and to complete tasks that are costly 
or time consuming with traditional methods [5].  There also 
have been several ambitious attempts to integrate human 
computing elements (HCE) and machine computing 
elements (MCE) under a uniformed service model.  



Active Crowd Translation (ACT) [6], a system that 
leverages crowdsourcing via Amazon Mechanical Turk 
(MTurk) was created to aid in machine translation for 
language pairs. The system is classified as an end-to-end 
human in the loop translation system framework that 
combines online, human non-expert and expert translators 
with an automatic machine translation system. As multiple 
persons translate a sentence, they are compared with each 
other and other external sources to improve the translation 
quality. The best translations are then re-introduced to the 
system to serve as parallel data for driving future translation 
suggestions. 

CrowdDB [7] was developed to leverage human input to 
respond to database queries that cannot be otherwise 
handled by the database management system. These queries 
typically require subjective comparisons that only a human 
can do. In other cases, human input is used to compensate 
for missing or incomplete data. Human query operators are 
used to solicit, integrate and clean crowd sourced data. The 
research collects metrics such as performance and cost and 
shows how these metrics are affected by worker affinity, 
training, fatigue, motivation and location. 

Yan et al. [5] took advantage of the emergence of 
smartphones and implemented an iOS mobile application; 
mCrowd, to distribute image related tasks. The application 
uses the Amazon MTurk and ChaCha crowdsourcing 
platforms to perform tasks such as querying images and 
capturing geo-tagged images amongst other image-related 
tasks. 

Heer & Bostock [8] explored the possibility of using 
crowdsourcing to evaluate a large design space of 
visualizations. They used Amazon MTurk to distribute 
human intelligence tasks to evaluate how visual variables 
affect the impact effectiveness of data visualizations. 
Results demonstrated that crowdsourcing results in lower 
cost to conduct the experiment. Savings are attributed to 
lower compensation rates for participants, lower expense for 
recruitment and solicitation, automated administration via 
Amazon MTurk platform among others. The quality of the 
results was high and is attributed to qualifications enforced 
for the task. Crowdsourcing also proved to give access to a 
wider population as opposed to convenient sampling; this 
catalyzed an experiment to be complete in a day versus 
weeks in a traditional experiment subject to recruitment and 
scheduling. It was found that crowd sourced tasks also 
allows for easier modification and extension of the study. 
On the other hand, some tasks took longer to complete. Data 
showed that tasks completed by participants in a traditional 
and controlled lab setting took an average of 5 seconds 
versus 42 seconds for the same crowd sourced task. 

In their work, Dustdar and Truong [3] assert that 
elasticity in hybrid systems should have proactive approach 
for provisioning both MCE and HCE components.  They 
propose that computing elements should be provisioned 
based on performance metrics including but not limited to 
financial costs, time, quality of results and compliance. This 

applies well to systems they describe where quality 
evaluations are done by human experts in the loop due to the 
complexity of a task. HCE’s serve the role of reviewing 
intermediate results rendered by their MCE counterparts.  

Several fundamental issues were identified in 
virtualizing humans and machine computing elements in an 
elastic process for large-scale complex applications [3]. 
They experimented with pattern recognition in satellite 
imagery. Their study showed that software does not detect 
specific patterns in many cases and thus human analysis is 
used. Human analysis was done by leveraging the input of 
crowds of novices, volunteers, professionals and experts in 
the area. Their study also addressed some of the challenges 
arising from managing the interactions of both machine-
based computing elements (MCEs) and human-based 
computing elements (HCEs) given that their requirements 
and implementations are different. With the crowds, every 
HCE can work autonomously or in groups and constraints 
may or may not be imposed on quality of work. Some 
processes may also require HCE experts in the loop to 
verify and validate quality of results produced by MCEs 
before authorizing the completion of tasks. Systems 
applying these configurations for elasticity, need to consider 
integrating metrics for performance including time, costs, 
compliance, precision and quality of results and how these 
hybrid systems of both human and machine allow for the 
proactive scaling. 

To consider virtualization and the provisioning of MCEs 
and HCEs in an elastic manner across clouds, the Vienna 
Elastic Computing Model, VieCom, was proposed in [3, 9]. 
VieCom supports the automated scaling in and out of MCE 
and HCE components based on dynamic contexts that 
impacts quality and costs. Service-oriented computing 
concepts and techniques are used to provision MCEs and 
HCEs under different clouds, elastic services may be 
invoked based on well-defined service interfaces [3]. 
VieCom seeks to address concern of traditional 
crowdscouring where there’s a delay between posting a task 
and matching it with a person with the right expertise. 
Instead, VieCom proactively uses human computing 
capabilities to perform tasks in a time effective fashion.  It 
considers HCEs as programmable units allowing them to 
play passive roles in task assignment by simply posting their 
own capabilities and possibilities and wait for incoming 
tasks. Tasks may also be given to a group that may be seen 
as one computational unit [9]. 

Tai, Leitner and Dustdar [10] defined units to measure 
and manage system resources in a system using an elasticity 
model. These units include usage and attributes of dynamic 
system resources, which extends to MCE’s and HCE’s. 
They propose units to measure impact of different system 
configurations to determine performance for higher qualities 
of service. Cost units were also presented considering the 
impact and the different system configurations. Finally, 
dynamicity units were defined; these acquire and release 
resources in a timely and a Just-In-Time fashion. 



Dynamicity also considers impact and cost units to 
configure the runtime in constantly changing environment in 
a fully or semi-automated manner which may include 
human intervention. 

Kamar, Hacker and Horvitz [11] investigated how 
Bayesian predictive models operated in architecture for 
crowdsourcing that combines the efforts of both machine 
vision and humans to solve consensus tasks. Consensus 
tasks are focused on uncovering correct answers to some 
phenomena or “hidden state of the world”, not known to the 
owner of the task but possibly a larger population capable of 
making predictions. These predictions are collected through 
multiple assessments from the crowd [11]. For their 
consensus task, the authors attempted to classify celestial 
bodies using a system dubbed “Galaxy Zoo”. Probabilistic 
models were used to predict human behavior and augment 
human and machine effort. The models were also used as a 
tool for crowd worker recruitment to optimize crowd utility 
based on inferences drawn on predictions from models [11].  

Authors in [12] propose a metric model called an 
Elasticity Profile (EP) that defines metrics for MCE’s and 
HCE’s to adjust the delivery of service of a SaaS cloud 
platform. The adjustment of service delivery is based on 
quality and cost metrics for provisioning HCEs and/or 
MCEs in a dynamically changing runtime environment to 
improve performance, reliability and throughput based on 
consumer input. The EP has three (3) dimensions namely 
resources, quality and costs and have different criteria for 
both MCE’s and HCE’s. Metrics defined in the EP are used 
to further design and determine activities and behavior of 
the elasticity runtime. The EP is also used to define system 
trade-offs between resources, cost and quality of the system. 

Kulkarni et al. [13] combined peer and machine grading 
to open-ended assessments while simultaneously preserving 
the quality of peer assessment and alleviating the burden of 
grading the assessments. They propose an algorithm for 
grading dubbed the “identify-verify pattern” that regulates 
the number of peers that evaluate an answer based on 
algorithm confidence in predictions and peer assessment. 
The first phase of the pattern predicts the grade of a student 
within some level of confidence; later used to quantify the 
number of peer raters needed. Using a rubric, a set of peers 
evaluates the answers and establishes key features followed 
by another set of peers corroborating the correct application 
of feature labels. 

Our work proposes a generic service-oriented framework 
seeking to leverage machine and human computing 
elements and optimize their performance in completing 
assigned tasks across different problem domains. Elasticity 
properties of tasks are identified and used to determine task 
assignment to HCE and MCE components to maximize 
output of the final solution. Other works such as mCrowd, 
Active Crowd Translation and Crowd DB [5, 6, 7] have 
focused on a pure human computing model via 
crowdsourcing. Hybrid computing model with humans and 
machines were incorporated in VieCom [5, 9]; however 

machine and humans complete distinct tasks or subtasks of 
a larger task. We focus our model on optimizing 
performance for the same task as in [13] to be performed by 
both humans and machine components in a sequenced 
workflow capable of provisioning the more appropriate type 
of component for a specific task based on previous 
performance history. 

III. ELASCTICITY FRAMEWORK AND ARCHITECTURE 
To address our first research question, we propose a 

service-oriented elasticity framework that leverages 
machine and human resources to efficiently and effectively 
perform a task. The framework is depicted in Figure 1. 

Our proposed elasticity framework (Figure 1) consists of 
three major components; (1) an Elasticity Manager that 
handles the selection process between HCE and MCE, (2) a 
Resource Manager that deals with the actual completion of 
the task by either MCE or HCE, and (3) a Solution 
Formulation component that determines the optimal output 
based on MCE and HCE feedback. It also determines if 
there enough varying of the data to warrant the application 
learning from the test case.  

As shown in the figure, the different components are 
comprised of the following services and their interactions: 
• Elasticity Service: This service orchestrates the use of 

MCEs and HCEs. It uses a metric model, an Elasticity 
Index (EI) to decide on the best combination of HCEs 
and MCEs that optimizes performance. The EI is 
domain-specific and captures the probability of 
successful task completion based on task modeling, as 
will be detailed later. 

• MCE Service: This service manages the automated 
execution of a task. 

• HCE Service: This service manages the execution of a 
task by a crowd of people. Different models of 
collaboration can be applied by customizing the HCE 
Service. For example, tasks can be done either by 
volunteers, experts, or in return of compensation. The 
service can also acquire resources by employing online 
crowdsourcing systems such as Amazon MTurk. 

• Consolidation Service: This service amalgamates the 
output of the HCE and MCE services. The service can 
decide, for example, on ignoring MCE or HCE output if 
certain quality threshold is not met. The service sends 
feedback to enhance future decisions. 

• Learning Service: This service builds intelligence into 
the HCEs and MCEs orchestration process by building 
a knowledge base, denoted as Training Examples in the 
figure. This knowledge base is enriched by feedback 
from the consolidation service and is used to enhance 
future system performance based on historical data. 



 
Figure 1. The Elasticity Service-Oriented Framework. 

A. Modelingd Elasticity 
For our elasticity service (component of elasticity 

manager) to determine when it is most appropriate to assign 
a task to machine versus human computing elements, we 
propose two weighted metric models, the Task Complexity 
Index (TCI) and the Elasticity Index (EI).  

B. Task Complexity Index 
The Task Complexity Index (TCI) is defined as a 

quantitative model that may be used to describe difficulty in 
completing a task. The TCI is comprised of weighted mean 
of metrics that are used to describe a task on a user-defined 
nominal scale. Formally, we define TCI as: 

 

 
where W1…Wx are weights attributed to corresponding 
metrics M1…Mx with x (subscript) denoting the maximum 
index of the weight metric pairs from a given set. M ∈ {1, 
2, …N} is a value on a nominal scale that captures a 
qualitative aspect of the task where N is the maximum value 
of the same nominal scale. All values are constrained to Z+, 
the set of positive integers. Domain experts define the 
metrics Mi and their weights Wi can be manually set by 
human or adjusted over time through the learning service of 
the system. 

C. Elasticity Index 
The EI is defined as a weighted sum model that 

considers the attributes Ai  namely TCI, costs, time and other 
runtime attributes defined by a domain expert that may 

affect the quality of results when completing tasks. EI is 
defined as: 
 
𝐸𝐼 =   𝑊!  ×  𝐴! +⋯+𝑊!   ×  𝐴!     (2) 
 

 
 
where W1…Wx are weights attributed to corresponding 
attributes values A1…Ax with x (subscript) denoting the 
maximum index of the weight metric pairs from a given set. 
Z+ denotes the set of positive integers and R+ the set of 
positive real numbers. 

For example, in case of face recognition, the TCI’s 
attributes capture the pictures’ characteristics that affect face 
recognition. These characteristics include the pictures’ size, 
color scheme, quality…etc. The EI (which considers TCI 
and other runtime attributes like cost, time, etc) is then used 
to predict the precision of face recognition by both HCEs 
and MCEs.  The purpose of our preliminary experimentation 
in this paper is to determine the nature of weights and how 
they vary in a real-life implementation. 

Listing 1 outlines the typical workflow of the Elasticity 
and Consolidation services. The Elasticity Service is given a 
queue of tasks and calculates the optimal HCE and MCE 
subtasks for each task. The decompose module is used to 
determine if the task should be assigned exclusively to 
MCE’s, HCE’s or a combination of both based on the task’s 
EI. The service assigns tasks to the HCE and MCE services 
to produce partial solutions that are amalgamated in the 
optimize module of the Consolidation Service to create an 
optimal solution. 

 
Elasticity Service  
Start 
           Foreach Task T in the queue 
                EI = Calculate_EI(T) 
              //Based on EI, decompose T into substasks  
              //to be executed by HCEs and MCEs 
                {THCE,TMCE}= Decompose (T, EI) 
                Output {THCE,TMCE} 
            EndFor 
Stop 
 
Consolidation Service 
Start 
            Foreach SubTask T{THCE, TMCE} in the queue 
                //Based on EI, calculate the optimal result  
                {SHCE, SMCE}= Optimize (THCE, TMCE, EI)  
               //Get Task solution from HCE and MCE Services 
                SECE = getSolution() 
                Output SECE                        
            EndFor 
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Stop 
Listing 1. Pseudo-Code of Core Services in the Proposed Elasticity 

Framework. 

D. Task Abstract Data Type 
The two metric models, TCI and EI are embedded in a 

task defined by the Task abstract data type (ADT) as shown 
in Listing 2. The Task ADT consists of four floating-point 
properties, Precision_Result, TCI, EI and EI_Tolerance. The 
Precision_Result is the current Task performance index of a 
particular computing element provisioned by the elasticity 
framework. TCI describes the complexity of the task and EI 
describes the holistic evaluation of resources required to 
complete task. EI_Tolerance describes a percentage value 
that is set to increase the system’s EI_Threshold value; this is 
in order to allow the provisioning of more computing 
elements considering EI components when uncertainty is 
high. The properties of the Task ADT will be evaluated in 
algorithms we propose in the elasticity process to determine 
appropriate provisioning computing resources, human or 
machine. 

 
Define Task As Structure 
 Precision_Result As Double 
 TCI As Double 
 EI As Double 
 EI_Tolerance As Double 
End Definition 

Listing 2. Task Abstract Data Type. 

E. Maximum Performance Index Algorithm 
Using the TCI, we have designed the Maximum 

Performance Index Algorithm (MPIA) outlined in Listing 3. 
The MPIA only considers the Task’s TCI, and a 
MCE_TCI_Threshold (the correlated TCI for previous 
performance history of available MCE’s of the elasticity 
framework), to provision computing components that would 
produce optimal solution completing a task. The MPIA’s 
sole objective is to render maximum precision results for 
task completion and does not consider costs, time and other 
factors that may affect the elasticity process.  

If Task TCI is greater than or equal to 
MCE_TCI_Threshold, HCE’s are assigned the task; else if 
the Task TCI is less than the MCE_TCI_Threshold, MCE’s 
are assigned the task. However if the MCE results consist of 
high levels of uncertainty, HCE’s will be assigned the task 
for further evaluation to lower uncertainty and improve 
precision in results to produce results via ECE. 

 
Algorithm_Maximum_Performance_Index 
Start 
   Set System MCE_TCI_Threshold 
   Set Acceptable_Uncertainty 
   Input Task 
   Task.TCI = Task.Calculate_TCI() 
   If Task.TCI>= MCE_TCI_Threshold 
 Task.Precision_Result = processTaskHCE(Task) 

   Else 
        Task.Precision_Result = processTaskMCE(Task) 
       If Task.Precision_Result<Acceptable_Uncertainty 
 Task.Precision_Results = processTaskHCE(Task) 
       End If 
   End If 
Stop 

Listing 3. Maximum Performance Index Algorithm. 

F. Weighted Metric Performance Index Algorithm 
Using the EI model, we have designed the Weighted 

Metric Performance Index Algorithm (WMPIA) as shown 
in Listing 4. The WMPIA is more holistic and pragmatic; it 
considers a Task’s EI and the system’s EI_Threshold to 
provision available computing components to complete the 
task. The system EI_Threshold ensures that tasks are 
completed within constraints of the resources of the 
elasticity framework. Given our earlier definition of EI, the 
WMPIA considers multiple factors that may affect the 
elasticity process, including financial costs, available time 
for task completion, TCI, expertise and other factors that 
may affect the process depending on the particular task 
environment. 

If Task EI is less than or equal to System_EI_Threshold, 
HCE’s are assigned the task; else if the Task EI is greater 
than the System_EI_Threshold, MCE’s are assigned the 
task. However if the MCE results consist of high levels of 
uncertainty, HCE’s will be assigned the task for further 
evaluation to lower uncertainty and improve precision in 
results via ECE if and only if the Task EI is lower than the 
System_EI_Threshold after being increased by a percentage 
defined by the Task EI Tolerance.  
Algorithm_Weighted_Metric_Performance_Index 
Start 
        Set System_EI_Threshold 
        Set Acceptable_Uncertainty 
        Set Task.EI_Tolerance 
        Input Task 
        Task.EI = Task.Calculate_EI() 
        If Task.EI<= System_EI_Threshold 
             Task.Precision_Result= processTaskHCE(Task) 
        Else 
              Task.Precision_Result = processTaskMCE(Task) 
              If Task.Precision_Result<_ 
                   Acceptable_Uncertainty AND_ 
                   (Task.EI<  (System_EI_Threshold_ 
                 * (1+Task.EI_Tolerance))) 
                         Task.Precision_Result = _ 
                         processTaskHCE(Task) 
             End If 
       End If 
Stop 

Listing 4. Weighted Metric Performance Index Algorithm. 



IV. CASE STUDY: MOBILE FACE RECOGNITION 
In our work [14], we applied our elasticity service-

oriented framework to the problem of face recognition. The 
physical layout for this case study encapsulating our 
proposed elasticity framework is illustrated in Figure 2. 
Reference images of popular individuals were stored in an 
image dataset. Testing images of the same individuals were 
passed through the elasticity system for identification. Face 
recognition tasks were initially sent to the MCE component 
for processing as shown in Figures 3, 4 and 5, and then 
forwarded to HCE components via mobile crowdsourcing 
application (Figure 6) to execute the same task. Tasks 
assigned to HCE’s were forwarded with their preliminary 
results provided from MCE recognition process. We found 
that HCE components had an average certainty of 69.13% 
with maximum certainty of 100% a minimum of 16.67% 
and a range of 83.33%. 

 
Figure 2. Face Recognition System Architecture Based on the 

Proposed Elastic Framework. 
 
Procedure WorkFlowECE 
Start 
 Foreach ReferencePicture to Add to System 
  Input ReferencePicture in ReferenceSet 
 EndFor 
  
 Foreach TestingPicture to Add to System 
  Input TestingPicture in TestingSet 
 EndFor 
  
 Foreach TestingPicture in TestingSet 

ListSuggestions=Call_ 
MCEMatch(accepts_ 
TestingPicture, ReferenceSet) 

 EndFor 
  
 Send ListSuggestions to HCE via CrowdSourcing 
  
 //WorkFlow executed on Mobile Device to  

//consolidate MCE with HCE to give ECE 
 Foreach MCESuggestion in ListSuggestions 
  Submit HCE Feedback for _ 

MCESuggestion to Learning Service 

 EndFor 
 //WorkFlow on Mobile Device Ends 
  
 //Begin MCE vs ECE analysis in Learning  

//service 
EI-ECE = Analyze HCE Feedback for  
MCESuggestions  //EI=ECE is EI-MCE //+ EI-
HCE 
EI-MCE = Analyze ListSuggestions for Positive  
Identification 

 Results = Compare EI-ECE vs EI-MCE 
 Show Results 
Stop 
 
 
Function MCEMatch Returns ListSuggestions Accepts_ 
 TestingPicture, ReferenceSet 
Start 
 Foreach ReferencePicture in ReferenceSet 
   

ResultSimilarityMatch=Compare _ 
TestingPicture to ReferencePicture using_ 

 MCE Face Recognition with bit _ 
Threshold value 50 
 
If ResultSimilarityMatch > 60% 

   Add to ListSuggestions 
  End If 
 EndFor 
 return ListSuggestions 
Stop 

Listing 5. Showing Algorithm Psuedo-BASIC Workflow of 
Mobile Face Recognition System. 

 
Figure 3. MCE component detecting faces in testing (left) and 

reference (right) pictures. 

 
Figure 4. MCE component cropping faces and gray-scaling 

pictures to minimize impact of colors and focus on facial features. 



 
Figure 5. MCE Component giving predictions for testing image 
using a bit matrix value comparison with byte threshold of value 

50. 

V. EVALUATION 

A. Experimentation 
We conducted an experiment to test our research questions 
(R1 and R2) using face recognition as a domain specific 
task. To address R1, we conducted the experiment to 
ascertain performance index to build an elasticity profile for 
ECEs. For R2, we analyzed the variability in performance of 
both MCEs and HCEs based on task complexity. Our 
analysis helps define the attributes that are used to build the 
EP for face recognition. These attributes capture the 
different metrics that affect the ability of human and 
machine in identifying faces in a set of random pictures. 

B. Data Set 
The pictures of 23 popular individuals were selected to 
construct a reference set consisting of actors, singers, 
athletes and politicians. Another 23 pictures with random 
variations in 6 identifiable metrics (face angle, eyes, mouth 
image angle, face magnification, image quality) of the same 
individuals in the reference set were used as the testing set. 
The pictures were collected online by using Google Image 
search. 

C. Workflow 
In our experiment, we study the face recognition 

precision achieved with MCE, i.e. using the face recognition 
software. We then apply our elasticity approach that 
combines both software and human and we collect the 
corresponding face recognition precision using ECE.  

The testing set was processed through the face 
recognition service for pre-verification. For each picture, the 
software component suggests a set of potential matches 
constrained to a matching threshold of greater than or equal 
to 60%. The custom Android application depicted in Figure 
6 is used to collect the crowd’s feedback on the same testing 
set. The matches generated by the face recognition service 

are sent via web service to the application. The application 
prompts the crowd user to indicate their celebrity category 
of expertise, and then s/he is presented with a series of 
pictures from the testing set and suggestions from the face 
recognition service as illustrated in the figure. The crowd 
used in our experiment is comprised of 30 randomly 
volunteering respondents 18 years and older, across the 
United States, Canada, France, the Middle East and 
Jamaica. The crowd was recruited via emails and social 
media connections. 

We calculated the number of positive matches (P) of all 
suggestions (S) to determine the certainty level of the 
system. We then calculated the TCI for each test case, by 
qualitatively identifying and evaluating 6 metrics that 
potentially affect the MCE’s performance in the face 
recognition and identification process. The metrics were 
evaluated on a nominal scale of 1 to 5, where 1 is least 
difficulty and 5 being maximum difficulty and itemized 
below: 

• (M1) Face Angle – Face in picture is 0° to an angle 
of 90° 

• (M2) Eyes – Eyes in picture are fully open to Shut 
• (M3) Mouth – Mouth is closed to fully open  
• (M4) Image Angle – Image is taken at an angle of 

0° to 90° 
• (M5) Face Magnification – Face is close to far 

away 
• (M6) Image Quality – Quality of Image (lighting, 

pixels, etc.) High to Poor 

For this experiment, all TCI weights W1…WX were set 
to 1 for equal consideration in the task complexity. After 
obtaining the TCI for each test case, XY-Plots of TCI values 
were graphed as independent variables against the 
performance indices of MCE, HCE and ECE components 
using the statistical analysis tool R. 

     
Figure 6. MCE components sent to Android Mobile 

crowdsourcing application for HCE’s to provide feedback based on 
MCE predictions and their own knowledge. 

VI. RESULTS AND ANALYSIS 
The face recognition precisions are depicted in Figure 9. 

As shown in the figure, out of the 23 test cases pictures, the 
recognition precision of 22 is increased by applying our 
ECE approach. The combined effort of MCE and HCE 



increased the probability of positively identifying an 
individual in the pictures in the testing set by a minimum of 
16.67% and a mean of 55%. For test cases (1, 2, 6, 8, 16, 18, 
20, 21 & 22), the pictures where MCE made suggestions 
consisting of a postive identification, ECE effort increased 
the precision by an average of 67.6%. In test case 8, MCE 
positively identifed the individual in the picture providing 
one (1) positive match. ECE responses reduced this 
probability by 53.3% as not all respondents positively 
identified the individual in the picture despite that the MCE 
component provided the correct suggestion; this is assumed 
to be related to the human respondents’ prior knowledge of 
the individal and exposure to affairs that would enable them 
to identify the individual. We found that seven (7) of thirty 
(30) respondents said that their expertise was in identifying 
politicians, however only three (3) of the seven (7) 
positively identified the individual in test case 8; hence the 
majority of respondents had no prior knowledge of the 
individual. 

We also observed a minimum increase of 16.67% and an 
average increase of 51.3% in positive identification of 
individuals when MCE and HCE efforts were combined; this 
includes situations were the MCE component failed to provide 
suggestions. As seen in test case 17, MCE failed to identify 
or make suggestions for the test portrait of athlete Usain 
Bolt however ECE was able to identify the athlete. We 
believe that facial expressions and difference in the angles 
of the face in the pictures impacted the performance of the 
MCE to positively identify the athelete (see Figures 7a and 
7b). Poor performance of MCE may be attributed to face 
recognition approaches and techniques employed by the 
face recognition service. Humans on the other hand 
positively identified the athelete with an accuracy of 70% 
irrespective of facial expressions or other variances of the 
athelete’s portrait. 

   
            (a)    (b)  

Figure 7. Reference portrait of Usain Bolt Figure 7(a) used by 
MCE as a reference to identify the athlete in Test Case 17. Figure 

7(b) is the unknown portrait to be identified by MCE and ECE 
processes. 

 
We find the median and the mode of MCE effort at 0 

and a mean positive match of 14.13%, as 14 of the 23 cases 
did not produce any suggestions positively identifying the 
individual. When using ECE, the median has significantly 
increased to 73.33% with a mode of 73.33% and a mean 
positive match of 69.13% (Figure 8).  

Results clearly show that employing our elasticity 
approach, the probabilities of positive identification increase 
significantly. 

 

 
Figure 8. MCE vs. ECE box-plots showing dispersion of 

probabilities to positively identifying an individual in 23 test cases. 
 

Computing elements’ (MCE, HCE and ECE) 
performance indexes for successful face recognition were 
measured and compared. As Illustrated in Figure 9, almost 
all test cases with exception of test case 8, the MCE had the 
highest levels of uncertainty of the three types of computing 
elements. Test case 8 had 100% accuracy from MCE with a 
reduced accuracy of ~53% accuracy from HCE resulting in 
lower combined ECE performance; further analysis shows 
respondents in particular countries didn’t know the public 
figure in the test case. It can also be seen in 16 of the 23 test 
cases, MCE completely failed and as such recorded no 
performance index. When HCE’s were assigned the task, 
HCE’s increased chances of successful face recognition by 
an average of 55%. When both MCE and HCE effort are 
combined to give ECE performance, ECE increases 
probability of successful face recognition by an average of 
69%. 

 

 
Figure 9. Performance Index bearing certainty for Computing 

Elements in elasticity framework for face recognition. 
 



 
Figure 10. TCI for each test case. 

 
Figure 11. TCI Box Plot for each test case dataset. 

 
The TCI for each test case was calculated and compared 

as shown in Figures 10 and 11. The testing data set had an 
average TCI of 0.32, a range of 0.3, a minimum TCI of 0.233 
and a maximum TCI of 0.533. Using XY-Plots, we 
determined correlations between the independent variable 
TCI and the corresponding performance index for the 
computing element for each test case.  

Figures 12, 13 14, and 15 are XY-Plots showing task TCI 
against certainties MCE, HCE, ECE, MCE/HCE/ECE 
respectively. Figure 12 shows an exponential decrease in the 
performance index of MCE components as the TCI for the 
task increased. It also portrays the MCE’s inability to 
function once TCI surpasses a value of ~0.3. The point 
bearing a Y value of 1 indicating perfect performance is seen 
as an outlier as this result was not replicated in any other test 
case. Figure 13 shows a graceful increase of the performance 
index of HCE components as TCI increased; performance 
remained relatively consistent between ranges of 0.4 to 0.6. 
An outlier bearing a Y value of -0.5 resulted in test case 8 
(Figure 13). For this test case, MCE performance was perfect 
with a certainty of 1, however uncertainty was increased 
when combined with HCE performance. Figure 14 also 
shows relatively consistent behavior of ECE as TCI 
increased with performance indexes ranging from 0.6 to 0.8. 
 

 
Figure 12. XY-Plot, TCI vs. MCE Certainty. 

 

 
Figure 13. XY-Plot, TCI vs. HCE Certainty. 

 
Figure 14. XY-Plot, TCI vs. ECE Certainty. 

 
Superimposing the three graphs above (Figures 12, 13 

and 14) into Figure 15, we find HCE and ECE performance 
converging; this accounts for high failure (16 of 23 test 
cases) of MCE component where MCE had no direct 
contributions to ECE results. Consequently the inability of 
the MCE component to perform after TCI is ~0.3 or higher 
records the lowest performance of the three computing 
elements in Figure 15. 



 
Figure 15. XY-Plot, TCI vs. MCE / HCE /ECE Certainty. 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we propose an elasticity model and 

framework to leverage the power of the crowd in solving 
complex problem. We apply our proposed elasticity 
framework to a face recognition problem. Our 
experimentations in that domain demonstrate that applying 
elasticity to the task of face recognition significantly 
increases the probability of positively identifying an 
individual in a picture. Virtualizing and provisioning 
humans as computing elements through crowdsourcing and 
integrating them with automated approaches produced 
positive results in test cases where the software alone failed 
to identify faces.  

We have also illustrated the relationship of a task’s TCI 
to the performance index of a computing element to 
complete the said task. Our results show that ECE in most 
cases, render the most optimal results. Based on this 
discovery, we propose the Maximum Performance Index 
Algorithm, which should in most cases if not all scenarios, 
produce the maximum performance index from an elasticity 
framework irrespective of the TCI for a task. From these 
results and observation, we also propose the Weighted 
Metric Performance Index Algorithm, which should provide 
the most optimal results working within the available 
resource constraints of an elasticity framework. 

For future experiments, we intend to implement the 
MPIA and the WMPIA in our elasticity framework case 
study for face recognition to validate their design. Also we 
intend to prove that the TCI proposed in this solution can be 
qualitatively viewed in varying forms of tasks, this will be 

done by undertaking case studies in other forms of tasks in 
which its properties can be quantified. 
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