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Abstract — Despite the plethora of polls, surveys, and reports 

stating that most companies are embracing Big Data, there is 

slow adoption of Big Data technologies, like Hadoop, in 

enterprises. One of the primary reasons for this is that companies 

have significant investments in legacy languages and systems and 

the process of migrating to newer (Big Data) technologies would 

represent a substantial commitment of time and money, while 

threatening their short-term service quality and revenue goals.  

In this paper, we propose a possible solution that enables existing 

infrastructure to access Big Data systems via a services 

application programming interface (API); minimizing the 

migration drag and (possibly negative) business repercussions. 
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I. INTRODUCTION 

Amazon, Apple, Facebook, Twitter, Netflix, and Google 
have set the standard for the current and emerging era in 
computing. Their core business is built on collecting, analyzing 
and monetizing large quantities of data. The magnitude of data 
and the processing required (within user expectations of 
response time) precludes the use of traditional data 
management technologies and has ushered in the age of Big 
Data [1].  

Midsized and large organizations recognize the benefits of 
investing in Big Data systems; but have been slow in their 
adoption due to varying reasons [2, 3]. They range from lack of 
necessary skills as data scientist to the financial uncertainty on 
how one qualifies the tradeoffs on the return on investment 
(ROI) in the short run as opposed to the log run outlook of a 
business. Other concerns surround effort, value decay, service 
degradation and disruption from porting current systems to 
newer infrastructures and technologies. We purport that the 
latter rationale can be partially mitigated by technology.  

In this paper, we propose a mechanism for methodically 
converting the current legacy enterprise application stack to 
one that leverages the latest and greatest Big Data 
technologies; while lessening the effort required and the 

possible disruption to the firm’s value proposition and quality 
of service agreements.  

We begin by presenting the fundamentals: What is Big 
Data? (Section II); and what is a typical Big Data stack and 
how it works (section III). In section IV, we present our 
proposal and discuss possible use cases (section V). Section VI 
presents related work, followed by future work (section VII) 
and conclusion (section VIII). 

II. WHAT IS BIG DATA? 

In the most basic of terms, Big Data refers to the collection, 
processing and analysis of extremely large data sets usually at 
scale of petabyte limits and beyond, especially for large scale 
University laboratory environments like ours. The magnitude 
and complexity of these data sets are very significant by way of 
volume that it becomes extremely difficult to process using 
contemporary database management tools or traditional data 
processing applications. For Big Data systems, there are 
normally challenges relating to capture, curation, storage, 
search transfer analysis and visualization of these data sets [4]. 

The McKinsey Global Institute estimates that data volume 
is growing 40% per year, and will grow 44 times larger 
between 2009 and 2020 [4].  The rise in prominence of Big 
Data stems from the value that can be extracted – correlations 
that can spot consumer and or business trends, insight that can 
be used to help with disease prevention, crime abatement, 
traffic routing, security breach detection, product enhancement, 
supply chain optimization, among others [4]. 

Formally, there is no official consensus on the scientific 
definition of Big Data. Gartner, and the rest of the computing 
industry, formally use the “3Vs” model as the basis for 
describing Big Data [5]. In 2012, Gartner presented its updated 
definition, which the industry’s de facto standard and states 
that “Big Data are high volume, high velocity, and/or high 
variety information assets that require new forms of processing 
to enable enhanced decision making, insight discovery and 
process optimization” [6]. In recent times, the dimensions of 



value and veracity have been added to the list of important 
characteristics of Big Data. Thus, the “5Vs” model is currently 
the acceptable standard for Big Data.  

1. Volume - this demonstrates large amounts of data 
collected by organizations measured petabytes, 
exabytes, zettabytes and even yottabytes worth of data 
from multiple sources, e.g. sensors, social media, 
smart digital devices, etc.  

2. Velocity - this considers real-time processing and 
analysis of large columns of data streaming in and out 
of an organization. 

3. Variety - this is concerned with varying forms of data 
organization, i.e. structured, semi-structured or 
unstructured, and in multiple modalities, i.e. free text, 
video, audio, sensor data, logs, etc.  

4. Value - this seeks to monetize through insight and 
influence spending, cost-saving strategies and 
optimizations.  

5. Veracity - this addresses the integrity of data and their 
respective sources, as they impact critical choices. 

The “5V’s” model will be assumed for this paper. Now that 
we understand what Big Data is, let’s examine the underlying 
architecture. 

III. TYPICAL BIG DATA STACK: WHAT & HOW  

A typical Big Data stack has a data management platform 

that distributes data across multiple machines, is fault-tolerant 

and enables querying and analysis across multiple, disparate 

machines, which may hold portions of the data being 

examined. 

To better illustrate the actual use and operation of a Big 

Data stack, we will use the example of Hadoop, the de facto 

Big Data platform standard.  

A. Hadoop 

Hadoop is an open-source implementation of Google 
MapReduce, developed by the Apache Software Foundation 
that allows large amounts of structured and unstructured data 
sets to be handled quickly.  

The Hadoop framework consists of two layers: Hadoop 
Distributed File System (HDFS) and MapReduce. It is written 
in Java and supported on any operating system platform. In 
Fig. 1, we see the Hadoop architectural overview.  

Hadoop accepts some form of data and splits it into 
different portions across the cluster (this facilitates the 
MapReduce algorithm so as not to burden a single machine). 
After the completion of the maps, i.e. the tasks that run 
simultaneously on all the relevant machines, they are all 
gathered, reduced and written to an output file for storage [7]. 

 

Fig. 1. Hadoop Architecture Overview 

B. Hadoop Distributed File System (HDFS) 

HDFS enables the file systems on the local host machines 
to be linked together to create one very large file system. 
HDFS is built with the tenet that faults are a normal occurrence 
(not an exception). Thus, HDFS always seeks to detect and 
recover from faults quickly. It copies data across multiple 
nodes to enable quick recovery in the event of node failure [7].  

C. MapReduce 

MapReduce is a programming model (an associated 
implementation) for processing large data sets with a parallel, 
distributed algorithm on a cluster [8].  

MapReduce users specify a map function that processes a 

key/value pair to generate a set of intermediate key/value 

pairs, and a reduce function that merges all intermediate 

values associated with the same intermediate key. Fig. 2 

illustrates the steps taken in a MapReduce job. 

 

Fig. 2. Basic Structure of the MapReduce algorithm 

Given this background on a standard Big Data stack, we 
can elucidate on the interface that we propose to leverage this 
stack. 

 
 

paradigm to be the best suitable for this and in this paper will 

carry out research aimed at either proving or disproving this 

claim. 

II. HADOOP 

Hadoop is an open-source implementation of Google 

MapReduce, developed by Apache Software Development 

that allows large amounts of structured and unstructured data 

sets to be handled quickly. The Hadoop framework consists of 

two layers: Hadoop Distributed File System (HDFS) and Map 

Reduce. It is supported on any platform, as it is written in Java 

but is recommended to be used on a Linux operating system. 

The image below depicts a graphical overview of the hadoop 

architecture. 

 
 Figure 1.0. The figure shows the overview of the 

hadoop architecture.  

A. Hadoop Distributed File System (HDFS) 

HDFS allows the large amounts of data to be stored and 

accessed across clusters. The file systems on local hosts are 

linked together to create one very large file system. HDFS is 

highly fault tolerant; Faults are treated as a normal occurrence 

and not as an exception, with the goal to detect and recover 

from faults quickly. To maintain reliability, it does what is 

called data replication where data is copied across multiple 

nodes; this is because it assumes nodes will fail, so there will 

always be a node that the data can be retrieved from. HDFS is 

also scalable, which means that new nodes can always be 

added easily, without the system having to change any 

protocols, or applications. Flexibility allows Hadoop to get 

any amount of data in any format (structured or unstructured), 

from multiple sources at a time. The image below shows the 

HDFS structure containing the NameNode (master node) and 

several slave nodes. 

 

 
 Figure 1.1. The figure shows the structure of the 

Hadoop File System(HDFS) 

 

The  Namenode  is  what  manages  t
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e  file  system’s  data,  and  

the data is stored in blocks, called data nodes, and each data 

block is replicated across clusters. When running a query the 

Namenode is first accessed to get information on the file data, 

after which the real data block is accessed [11]. 

B. Map Reduce 

Map reduction or formally known as MapReduce is a 

programming model for processing large data sets with a 

parallel, distributed algorithm on a cluster [3].  The 

MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. 

Users specify a map function that processes a key/value pair to 

generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with 

the same intermediate key. Many real world tasks are 

expressible in this model. Programs written in this functional 

style are automatically parallelized (The ability of data being 

process simultaneously and problems being divided into 

smaller problems) and executed on a large cluster of 

commodity machines. MapReduce runs on a large cluster of 

commodity machines and is highly scalable, a typical 

MapReduce computation processes many terabytes of data on 

thousands of machines. The image below depicts the steps 

taken in any MapReduce job. 

 
 Figure 1.2: The figure shows the basic structure of a 
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IV. BIG DATA SERVICES (BDS) API 

An API (Application Programming Interface) is a set of 

rules and instructions that an application can follow to access 

services and resources that are provided by another 

application. More commonly, an API represents a set of 

method or function calls that dictate the use of an underlying 

object [9, 10].  

This paper purports the creation of a Big Data Services 

(BDS) API, which would facilitate the easy manipulation of 

Big Data that are stored on separate platforms; with the 

platforms potentially employing different languages, run-time 

environments and frameworks.  

The BDS API is platform and language independent; 

allowing it to connect to and from any language or platform. 

This also applies to legacy languages and systems 

implemented in them. 

The BDS API is focused on the goals of seamless 

processing, communication, storage and sharing.  

Big Data Processing:  The BDS API allows for cross 

platform processing of large data through the use of streams 

and stream managers. This allows the user to split data 

processing across several machines clusters as opposed to a 

single cluster. 

 
Fig. 3. BDS API Function 

Language Communication: Through the use of Extensible 

Markup Language (XML) and JavaScript Object Notation 

(JSON) parsing, as well as a Language Knowledgebase (Fig. 

3), the Semantic Analyzer (Fig. 3) of the BDS API is able to 

provide cross language support. 

Storage (on Legacy Systems): As previously mentioned, 

traditional data warehousing systems cannot be updated 

without a large investment of time and funds. The BDS API, 

with its language communication support, allows data to be 

passed between systems regardless of architecture or 

programming language this allows legacy systems to 

communicate with more modern systems. 

Data Sharing: Stream collectors, built into the BDS API, 

manage streams connections, and provide fault tolerance 

mechanisms to allow large data sets to be shared reliably and 

quickly. 

In Fig. 3 below, we see that the BDS API may be utilized by 

any number of applications working alone or collaboratively. 

Here, we use Hadoop as an instance of a Big Data platform 

(without loss of generality). When an application (or a set of 

collaborative applications) wishes to communicate with the 

Big Data platform, it connects to the BDS API through 

streams1. A BDS API stream is similar to other conventional 

streams [11].  

This streaming interface allows easy communication 

between the BDS API and the Big Data platform (Hadoop in 

the current instance), without the need for a specific API for 

every programming language. 

Fig. 4 shows a simple example of how applications, 

possibly coded in different languages, can communicate with 

each other to work collaboratively towards an established 

goal. In this specific scenario, there are three systems or 

applications. As indicated earlier, each system has an 

associated process stream. 

 
Fig. 4. System/Application Communication using the BDS API 

We color-code the process stream for each system: blue 

represents System 1, green represents System 2, and yellow 

represents System 3 (Fig. 4). In this situation, the current task 

involves System 1 sending data (or a command), to the API, 

that is processed and becomes readable for System 2. System 2 

retrieves the information and sends data to the API, which 

processes the command and sends the results to System 3. 

System 3 processes the data and sends it back to the API for 

processing then it sends it back to System 2 for the initial 

process to be completed.  

Given this illustration of how the BDS API may be used, we 

will expound on the components of the BDS API.  

                                                           
1 A stream is a full-duplex bidirectional data transfer path between a process 

in the user’s environment and one in the driver environment [11]. 
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A. BDS API Components 

As shown in Fig. 3, the BDS API has four (4) distinct 

components: the Stream Collector, the Semantic Analyzer, the 

Language Knowledgebase and the XML and JSON parser.  

1) Stream Collector 

This component stores and manages all aspects of the API 

related to stream connection. The Stream Collector also 

contains information about all known languages’ stream 

methods and the criteria required to connect successfully and 

efficiently to all language streams. The Stream Collector is 

normally the sole part of the API that an (external) application 

communicates with. The Stream Collector acts as the 

coordination point that communicates with the other BDS 

components to accomplish a given task. This single entry and 

exit approach enables uniform enforcement of security 

constraints. On the contrary, this also results in the Stream 

Collector potentially becoming a performance bottleneck. 

Hence, we have designed it with bottleneck detection in data 

processing in an attempt to avoid this problem. The Stream 

Collector also contains functionality for fault tolerance, which 

enables this component to keep data flowing at all times. 

2) Semantic Analyzer 

Semantic analysis is the science of figuring out the 

meaning of linguistic input [12]. Semantic analysis deals with 

processing of an entered language in an effort to gain some 

knowledge of what the data entered should represent. 

The BDS API uses semantic analysis to gain knowledge 

about what the application wants to pass, such as structures, 

datasets and other forms of data. Through this process the raw 

data can be identified and then converted to a new format 

fitting the language to which it will be passed. 

Since the Semantic Analyzer requires quite a bit of 

knowledge about the programming languages only a few 

languages (i.e. C, Java, Cobol, FoxPro and Erlang) were 

selected for version 1 of the BDS API and on future iterations 

more languages will be added. In a nutshell, this component 

allows the BDS API to understand varying structures of the 

different languages and handle them effectively. 

3) Language Knowledgebase 

To do semantic analysis, the Semantic Analyzer has to 

have knowledge about the structure of the language. The 

Language Knowledgebase stores all information related to a 

language in respect to the needs of the BDS API. 

At the core, the knowledgebase is a warehouse of 

structures, standards and functions that are most commonly 

used in each programming language. The major drawback of 

using this design is that it requires the storage of a potentially 

large amount of data. It will also take time for specific data to 

be found and updated (as languages evolve). To address this 

issue, the knowledgebase uses a clustering technique where 

languages that use similar structures for certain instances, are 

grouped together to save on space and time overhead to access 

it. 

4) XML and JSON Parser 

Both XML and JSON are easily parsed [13, 14], which 

makes them good candidates for cross language support and 

communication. This component can create and read data in 

these formats. The benefit is that XML and JSON complies 

with current standards; also, we are able to work with 

applications that are already built to expect data in these 

formats. 

 
Fig. 5. BDS API Component Communication 

Fig. 5 shows the communication between each component 

of the BDS API. The Stream Collector only communicates 

with the Language Knowledgebase when it is either 

establishing a new stream or terminating an existing stream. 

For all other issues, the Stream Collector communicates with 

the Semantic Analyzer. Upon receiving a request from the 

Stream Collector, the Semantic Analyzer deciphers the 

message with the help of either the Language Knowledgebase 

or the XML/JSON parser and then re-constructs a new 

message based on the encoding criteria for the language to 

which the message will be sent. The result is then returned to 

the Stream Collector, which sends the message through the 

stream to the destination application. The destination 

application may or may not be the application that made the 

initial call.  

B. Initial set of BDS API Methods/Functions 

The BDS API contains several functions/methods aimed 

at, but not limited to, the following: connecting streams, 

interfacing with Hadoop (we use this as the Big Data platform 

for version 1 of the BDS API), and transferring of files. Due to 

the number of functions, only a few where selected for 

presentation in this paper; based on their importance. 

1) General Purpose 

connect/0 – The connect/0 function connects an 

application stream to the BDS API. This function returns a 

reference number to be used for later connections. 

connect/1 – The connect/1 function connects one 

application stream to another application stream or to Hadoop. 

It returns a connection reference to be used later by other 

functions. The function accepts 1 parameter of type string, 

which can either be the reference number for the stream that it 



should connect to or the word ‘hadoop’ to identify connection 

to the Hadoop instance that it is running inside the API. 

connect/2 – The connect/2 function connects one 

application stream to another application stream and also 

specifies the type of the data that should be passed through the 

stream. It returns a connection string to be used in later 

functions. The type of data can either be: XML (representing 

that data should be passed in XML format), JSON 

(representing that data should be passed in JSON format) or 

native (representing that data should be passed in a byte array 

format). 

terminate/1 – The terminate/1 function accepts a 

connection string and terminates the connection. It should be 

noted that after this function is used the connection string will 

become unusable and errors will be thrown if an attempt is 

made to use it. 

2) Language Communication 

send_data/2 – The send_data/2 function allows data to be 

sent over a stream. It accepts two (2) parameters: a connection 

string (which must be an un-terminated reference string) and 

the data that should be passed. It returns a value indicating 

whether the data was successfully sent or not. 

send_data/3 – The send_data/3 function allows data to be 

sent over a stream. It accepts three (3) parameters: a 

connection string (i.e. an un-terminated stream that has been 

returned from either connect/1 or connect/2 function), the data 

that should be passed, and the amount of bytes it will take up. 

This function is used when the application or language 

accepting the data needs to prepare some storage mechanism 

before persisting the data. It returns a value that states whether 

the data was successfully sent (or not). 

send_data/4 – The send_data/4 function, like its 

predecessors, sends data across a connection, but it allows for 

the user to override the type of data to be transferred for one 

transaction. This is used in cases where the user needs to send 

data in a specific format once and wishes not to create a new 

connection. It accepts four (4) parameters: a connection string 

(similar to the other cases), the data that should be passed, and 

the amount of bytes it will take up (this value can be declared 

as null, this will let the API know that no byte size should be 

transferred) and the type of data to be passed. It returns a 

value stating if the data was successfully sent. 

3) Hadoop 

mapper/2 – The mapper/2 function allows the user to set 

the location of the mapper file that will be used in the Hadoop 

MapReduce operation. It accepts two (2) parameters: a valid, 

un-terminated connection string, and the location of the 

mapper file on the system. It returns a value that states if the 

value was set. 

reducer/2 – The reducer /2 function allows the user to set 

the location of the reducer file that will be used in the Hadoop 

MapReduce operation. It accepts two (2) parameters: a valid, 

un-terminated connection string, and the location of the 

reducer file on the system. It returns a value that states if the 

value was set. 

set_input_location/2 – The set_input_location/2 function 

allows the user to set the input file or folder location that will 

be used for the MapReduce operation. This function accepts 

two (2) parameters: a valid, un-terminated connection string 

and the location of the input file or folder on the system. It 

returns a value whether true or false stating if the value was 

set. 

set_output_location/2 – The set_output_location/2 

function allows the user to set the output file or folder location 

that will be used for the map reduce. This function accepts two 

(2) parameters: a valid, un-terminated connection string and 

the location of the output file or folder on the system. It 

returns a value that indicates if the value was set. 

run_map_reduce/0 – the run_map_reduce/0 function 

starts the Hadoop MapReduce job. If any of the above 

functions are not properly executed, errors are thrown. 

4) Data transfer 

transfer_data/3 – The transfer_data/3 function allows for 

data to be sent across applications through the use of the BDS 

API streams. It accepts three (3) parameters: a valid, un-

terminated connection string, the data that should be passed, 

and a Boolean value to indicate whether to send in parallel or 

not. This function may be viewed as being the same as the 

send_data functions, but it differs in the fact that it is used for 

transferring large data sets across platforms while the 

send_data functions are used for simple message 

communications. 

Now that we have introduced the BDS API, let’s explore 

how it can be used in real world situations. 

C. Implementation 

The BDS API as a proof of concept was implemented as a 

standalone server written in the JAVA programming language, 

using server socket and streams to provide cross 

communication language support. Data is transferred as byte 

arrays using the UTF-8 Standard over these streams. Byte 

arrays were chosen because the languages chosen for version 

one all adhered to the UTF requirement. 

To track all application currently connected to and through 

the BDS API the HashMap class in Java was used for quick 

and easy validation of elements. Upon successful connection 

sessions to the API from a client, each session is assigned a 

unique reference number. This reference number is required 

for every other command used on the API excluding the 

Hadoop commands. Also this reference number is stored in 

the HashMap with other information about the connected node 

so that it can be easily acquired if so desired by another 

connecting node. To communicate with a subsequent client 

session which is registered with the API a further connection 

needs to be initiated (see the connect/1 or connect/2 

documentation in Section IV sub section B) this connection is 

also given a reference number to be used through the 

application. 

As suggested above the byte array is used to transfer data 

between the end users of the API. Once the byte array is 

received it is converted into the format which the API requires 

(this is based on which block of the execution the API call at 



that instance has dereference). For example if the user is 

currently attempting to perform an API command byte array 

would be converted into a string and then checked against 

known commands. After a successful match then the 

command would execute as is required. An example of a 

command can be seen below in listing 2. 

 

 
 

In handling various data structures such as lists, arrays and 

so on; an approach was taken where the data structure 

requirement were sent blocks at a time to the API which in 

turn would then be sent to the receiving node as plain text and 

a special identifier used to mark the ending of the stated 

structure. 

For syntax and semantic analysis of the data structures 

referenced by the BDS; each language instance that is 

supported by the BDS launches its own instance or function 

call to the syntax and semantic parser invoked as stored 

procedures from the BDS API. In other words where the BDS 

API as service runs a non native language call, the various 

data structure translations of the non native language API is 

decoded by the syntax and semantic parser translation routines 

running within the BDS. To use the translation process 

features of our BDS API the convert/4 command is used (this 

command is not explained in the list above), upon executing 

this command and passing the required input parameters (i.e. 

language conversion input source, language conversion output 

source, the language name, language paradigm type, the name 

of the file to be returned at the language output source and the 

data content of the file involved in the language translation). 

The BDS API will read data parameters given data line by line 

each time looking for mentioned specific keyword input 

parameters so that it can identify the feature of the language to 

be converted. We make the tacit and complicit assumption that 

the correct language keyword input parameters have been 

specified to the BDS API. Upon finding this keyword it then 

parses the statement and finds the corresponding feature in the 

language it is converting to, then the parsed statement is then 

reconstructed in the required format. An example of a C to 

Java conversion can be seen below 

 
Statements such as int age would be noticed through syntax 

analysis as declarative statements while a printf statement 

would be recognized as an output statement, the code snippet 

would be converted to its Java equivalent as seen below. 

#include <stdio.h> 

int main() 

{ 

 int age; 

 printf("Enter age: "); 

 scanf("%d",&age); 

 printf("Your age is: %d \n",age); 

 if(age>18){ 

  printf("you are old!!!"); 

 }else{ 

  printf("you are young!!!"); 

 } 

 return 0; 

} 
Listing 3: Showing a simple C code 

if (command.equals("send_data/2")) { 

byte[] reference_byte = new byte[1024]; 

istream.read(reference_byte); 

String reference = new 

String(reference_byte).trim(); 

byte[] message_byte = new byte[1024]; 

istream.read(message_byte); 

String message = new String(message_byte).trim(); 

date = new Date(); 

logged.info("Attempting to retrieve connection for 

reference: " + reference + ": " + 

dateFormat.format(date)); 

if (connectionList.get(reference) != null) { 
logged.info("Successfully retrieved connections for 

reference: " + reference + ": " + 

dateFormat.format(date)); 

ConnectedSocket connection = 

connectionList.get(reference); 

SocketClass local = 

connection.getSocketToSendToFromRefere

nce(this.communicateID); 

logged.info("Attempting to send message: " + 

message + " across connection refere: " + 

reference + ": " + dateFormat.format(date)); 

String to_return = "Message " + message + " 

sent through conencted stream with 

reference " + reference; 

byte[] result_sender = to_return.getBytes(); 

byte[] result_receiver = message.getBytes(); 

ostream.write(result_sender); 

local.os.write(result_receiver); 

logged.info("Sent message: " + message + " 

across connection reference: " + reference + 

": " + dateFormat.format(date)); 

}  else { 

date = new Date(); 

logged.info("Retrieval of connection failed, no 

such connection reference ("+reference+"): 

"+dateFormat.format(date)); 

String to_return = "No socket connection exist 

with that reference."; 

byte[] result = to_return.getBytes(); 

ostream.write(result); 

} 

} 
Listing 2: Showing sample code for the send_data/2 command 

byte[] word = new byte[1024]; 

istream.read(word); 
String command = new String(word).trim().replaceAll("\\s+",""); 

Listing 1: Showing array to string conversion 



 
Concurrency management is handled through threads in the 

JAVA programming language, upon first contact with the 

BDS API the connection is given a threaded class to be used 

throughout the life of the communication, this class contains 

the command references that are used to execute the 

commands on the API and also contains a static hash map 

which is used to track other connected clients and a second 

hash map to store connections between clients. The static list 

contains socket references for each client, this allows for each 

threaded class to communicate with any connected node 

without being required to create that specific socket 

connection. A thread is terminated by the client sending the 

terminate command. Fault tolerance is achieved via a 

combination of validation steps by the use of try/ catch blocks. 

The designers of the API believed checking for  failures is a 

key debugging requirement of the BDS. The default 

assumptions Java’s exception handling are well understood as 

suitable fault tolerance and security feature and hence explains 

our preference in how we designed this API.  Before any 

command can be executed the static hash map class is checked 

to ensure that the current running thread exceptions for 

example is valid in its existence (otherwise the transaction 

thread is immediately terminated at the function call), if the 

command to be executed requires communication between 

two (2) of the BDS API’s clients then the other client’s 

reference number is also checked for validation along with the 

overall client connection. If any of these cannot be validated 

then the process will not be executed and the relevant parties 

notified. Each failure or exception thrown in the API will be 

logged for review later on, this review will be used to aid in 

making the API more resilient. Also the threaded class from 

which the exception was raised will force cancellation on the 

process which triggered the exception and alert the relevant 

parties of this exception. No other process will be affected by 

the failure.  

V. USE CASE SCENARIOS 

We have previously hinted at ideal usage scenarios for the 
BDS API. In this section, we will explicitly highlight the most 
compelling cases.  

A. Migrating Existing Data Systems 

The BDS API provides easy migration of system 

information; with regards to the data involved. This API 

allows for large unstructured data sets to be passed from one 

system to the next through the use of file streams and fault 

tolerant atomic states embedded within our code design. 

System migration is a hassle because companies have to 

spend excessive amounts of time and resources preparing the 

data for transfer. They sometimes require the building of 

facilities so that nothing obstructs the transaction; the BDS 

API would provide an alternative solution to this problem. 

Through the use of file streams that connect to the 

different systems, data can be passed easily from one system 

to the next without the hassle that exists in a normal data 

migration. Also the built-in fault tolerant model of the API 

would add a failsafe to protect the loss of data. 
 Assume there exists System A, and an existing requirement 
to migrate the resources found on System A to another existing 
System B. The BDS API user would utilize the function 
connect/0 and connect/1 to connect both Systems together. The 
transfer_data/3 function would then be called by System A; 
passing in the third value as true to start the streaming of data 
to System B and the API would handle all necessary fault 
tolerance information and data transfer. After the data has been 
migrated System B would then check to ensure all packets were 
received and then terminate its connection. 

B. Multiple Platforms Performing a Single Task 

As the BDS API is platform independent, it enables cross-

platform task execution and management. The BDS API could 

turn a normal single node process into a multiple node process 

through the utilization of its streaming interface and the 

management of these streams that it directly provides. For this 

type of support the API would need to be able to manage 

concurrent states and fault tolerant like our BDS API. 

Consider some Application A that exists on several 

different systems, with all Application A’s performing the 

same task. The BDS API, could connect all Application A’s to 

a single master application and then utilizing the connect/0, 

connect/1 and send_data functions could distribute individual 

commands to the said applications. The API would further 

gather responses from the various slave nodes. The API would 

handle all platform specific concerns and distribute the correct 

commands accordingly. This enables the management of 

several applications across platforms. 

C. Language Interoperability 

As mentioned earlier, the BDS API supports 

communication among different programming languages; 

using the appropriate interface descriptor language (IDL) as 

required.  

For example, consider an application that is built in Cobol 

that has a need to communicate with an application that is 

built in C#. Since the language utilizes the API as a medium it 

would allow for established session communication between 

the languages. Our API supports IDLs with the Cobol Object 

plug-ins. This converter allows Cobol, which is highly 

procedural, to now run as an object-oriented feature that is 

import java.util.Scanner; 

public class hello{ 

 public static void main(String[] args) 

 { 

  Integer age; 

  System.out.print("Enter age: "); 

  Scanner scan = new Scanner(System.in); 

  age = scan.nextInt(); 

  System.out.print("Your age is: "+ age+" \n"); 
  if(age>18){ 

   System.out.print("you are old!!!"); 

  }else{ 

   System.out.print("you are young!!!"); 

  } 

 } 

} 
Listing 4: Showing the C code of listing 1 transformed into Java code 



popularly referred today as OCobol. This scalability feature of 

the BDS API enables proper acknowledgement of any external 

language interfaces using these IDL plug-ins. Built into our 

API design is a compiler syntax and semantic analyzer that 

allows for atomic state reduction of any language input to 

safeguard against side effects. Hence, when a message is 

passed from one language to the next it can be easily 

converted unambiguously. We have deliberately not indicated 

any preference in programming language paradigm as we 

believe that with time, suitable interface descriptors across 

language platforms will be seamless; especially as attempts 

are made to infuse extensible API support or IDLs between 

legacy and emergent languages. 

VI. RELATED WORK 

The idea of making Big Data platforms, like Hadoop, more 
accessible is not novel. There are several ongoing efforts in the 
well established literature that seek to extract the benefits from 
storing, organizing, analyzing and searching Big Data. In this 
section, we present the related literature and how our own work 
fit into this emergent space. To date the BDS API is the only 
proof of concept tool as far as we have seen in the peer 
reviewed literature that provide multi-tier interface descriptive 
language functionality for the big data environments.  

A. HIVE 

Hadoop requires developers to write custom programs that 

are hard to maintain and reuse. Hive was created to solve this 

problem. It is an open source data warehousing solution built 

on top of Hadoop and it support queries expressed in a SQL-

like declarative language called HiveQL. Statements in 

HiveQL are compiled into MapReduce jobs and executed 

[15]. Our BDS API dereferences these constructs to support its 

full program execution.  

Where Hive was built to aid developers in writing better 

MapReduce jobs that are efficient and scalable it is clear that 

real benefit is to assist language developers who need to work 

on an enterprise scale with this Big Data. However, Hive is 

limited in its usage because it largely deals with bulk data sets 

even though it uses similar constructs to that of SQL which 

exists in Relational Databases. HiveQL or Hive should not be 

viewed as a relational database management system (RDMS) 

but as a batch processing integration tool for the Hadoop 

framework. A prime example is that Hive does batch deletes 

as opposed to individual deletes which are allowed in the 

RDMS. It should also be noted that it doesn’t offer support for 

cross-platform or inter-language communication that is now 

supported by our BDS API as a key distinguishing feature on 

how we supplement the gap in this literature. 

B. LiquidFiles  

We model components of our BDS API using LiquidFile 

architectures. LiquidFiles is a web-based API that accepts 

medium to relational database files and splits them up into 

smaller blocks of data to be proccessed. These smaller blocks 

of data are normally around 100 megabytes in size. It is easily 

scalable and can work with all files sizes. It also uses XML 

file formatting to communicate with multiple languages and 

can built-in security features [16]. 

As LiquidFiles is ideally web-based, it assumes default   

Internet connectivity to maintain a persistent state . This 

feature may be a handicap for users without persistent Internet 

connection. Currently, LiquidFiles do not have support for 

unstructured data sets running on Hadoop. Our naïve toy 

experiment testing shows that liquidfiles persistent state 

connectivity to handle unstructured petabyte or exabyte file 

limits is unstable. This requires traditional developers to create 

customized connection mechanisms to these platforms which 

would handle these new data formats. This transition however 

is expensive both in terms of time, money and techincal 

infrastructure adoption unless someone can prove this to us 

otherwise, but we have not seen any new evidence to show 

this at least up to the time we had been preparing this paper.  

C. BULK API 

Our efforts were also motivated by looking at the Bulk API, 

which is used to query or modify a large number of records 

asynchronously. This was achieved by submitting batches that 

are running as background processes. It is REST-based2 and is 

optimized for handling relatively large sets of structured data. 

Bulk API is designed to handle records when the data sets 

contain a couple thousands to millions of records up to mega-

byte and even terabyte scale [17]. We reasonably argue that 

our BDS API enables a wider range of functionality than Bulk 

API that handle peta-byte scale data limits and beyond. 

D. Google BigQuery 

Google BigQuery is a tool, which enables users to right fast 

SQL-like queries (the official dialect used is BigQuery's SQL 

dialect) against large data sets using the processing power of 

Google [18]. BigQuery can be accessed by varying means 

such as: a browser tool, a command line tool, calling the 

BigQuery REST API or client libraries (JAVA, PHP and 

Python) [18]. Data however either has to be stored on 

Google's cloud server or streamed into the API for use. 

The difference between our BDS API and the service 

offered by BigQuery is the scalable multiple language syntax 

support as compared to google BigQuery that adhere to a 

single native SQL dialect. 

E. Oracle XQuery 

Oracle XQuery for Hadoop is a transformation engine for 

semi-structured big data [19]. Oracle XQuery runs in the 

XQuery language and it transforms commands into a series of 

                                                           
2 REST (Representational state transfer) is an architectural style consisting of 

a coordinated set of constraints applied to components, connectors, and data 
elements, within a distributed hypermedia system. 



MapReduce jobs that are executed (in parallel) on the Hadoop 

clusters. With this solution, one can focus on data movement 

and transformation logic, instead of using Java or MapReduce; 

which carry their own levels of complexities, without 

sacrificing scalability or performance [19]. Unlike other 

Hadoop vendors, the data to be processed XQuery does not 

only have to be located on the Hadoop Distributed File System 

(HDFS), but it can also be stored in an Oracle NoSQL 

Database. Oracle’s Big Data also contains advance R 

connectors for better statistical algorithm applications [20]. 

Oracle XQuery provides good vendor specific support for 

its user-driven queries running in NoSQL databases albeit 

Hadoop service enabled or not. We also realize that one of the 

limitations of the Oracle XQuery over Hadoop is its lack of 

support for non native language communication or process 

management APIs. These observations have driven our 

motivations to design the BDS API as an open source scalable 

API that improves on the Oracle XQuery functionalities. 

VII. FUTURE WORK 

The research team recognizes that there is a lot of further 
work to be done and as such have developed a roadmap for 
same. 

A. Knowledge Base Constraints 

Currently, the BDS API parser depends on knowledge of 

the different languages to properly function (as at present the 

current version only supports a limited set of language 

scalabilities). To address this, research will be undertaken to 

create a new binary language that runs the BDS API as its own 

embedded virtual machine (VM) operating system language. 

This virtual machine language API will autonomously convert 

binary data between non native language instances to ensure 

we strive for the ideal when we mention scalability and 

platform independence.   

B. Restricted Local Customization Capabilities 

Currently the system is incapable of allowing local 

customization of platforms via a suitable visualization front 

end. We mostly drive the system functions of the BDS API 

using command line interactivity and limited graphical end 

user interface (GUI) support. In other words it would be 

convenient for us to have a sophisticated front end, with 

intelligent human computer interactivity (HCI) to the BDS 

API. This would allow the end users of our tool to seamlessly 

visualize all the language interdependency communication 

scenarios across multiple language platforms that are 

interacting on this Hadoop framework using our BDS API. 

This approach invariably would also allow us to build access 

control functionalities into the GUI front end version of the 

BDS API as a security feature that will allows us to separate 

the API from direct manipulation while it provides customized 

and personalized interfaces for the end user interaction within 

the scalable language hadoop environments. 

C. Mobile Computing and Communication Capabilities 

We intend to extend the BDS API as a mobile application 

support feature. This opportunity allows us to expand the 

outreach of access to end users of our tool e.g. mobile 

companies.  

D. Increased Platform Support 

The current instance of the BDS API only supports 

Hadoop. We will generalize the API to support any arbitrary 

Big Data platforms in future. 

E. Autonomy 

Where our BDS API can run as its own autonomous agent, 

the future design should allow for dynamic state interaction 

with big data platforms, based on unsupervised goal setting on 

task. This could allows us to define autonomous MapReduce 

functionalities that will enable improved computational 

efficiencies on both unstructured data and meta data now 

generated in these large environments. It goes without saying  

that our tool represents an Internet of Signs (IOS) philosophy  

that should be able to differentiate large state data structures 

sets in real time, apply the suitable syntax and semantic data 

transaction analysis as a feature of the API parsing. These 

underlined new functionalities become relevant as Big Data 

platforms keep changing.  
The suggestions described above fits into the realm of other 

ongoing work within our research group on autonomous 
interface descriptive languages (IDL); where we explore 
various deep learning techniques as a neural network language 
translation analysis service. These expectations allows to 
design the BDS API as a “dynamic learning service”.  

Parts of the current work on the BDS API will be available 
within an open stack so that contributing developers can reuse 
and test new embedded functionalities. This approach will 
allow us to gain constructive feedback on the approaches we 
have used, while we improve our existing versions.    

VIII. CONCLUSION 

Given the need for firms to extract value from the vast 
amounts of sparse flowing data that is currently being 
generated from within various ubiquitous software as 
service(SAAS) programming language applications 
environments found everywhere today, this need exacerbates 
the concerns that finding suitable tools that harness the power 
of  existing and future Big Data platforms cannot be 
underestimated. In this paper, we presented the Big Data 
Services (BDS) API as a proof of concept tool to assuage the 
concerns around migration and leveraging contemporary 
unstructured data within evolving data center environments.  
The BDS API’s contributory support for legacy and emergent 
languages running over a Hadoop framework minimizes the 
need for full-scale system migration to new independent 
language platforms. This work is the first of its kind anywhere 
in the current literature as far as we know.   

Through the use of language translation analysis techniques 
which apply the use of data streams, the BDS API 
communicates seamlessly with such data streams (i.e. petabyte 
scale and greater). The BDS API is language independent by 
design as it allows inter-process communication between tiers 
of SAAS enabled legacy and emergent languages. The API has 
in-built fault tolerance, concurrency management and 



bottleneck detection features that allows it to be an enabler for 
large unstructured data center environments.  
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