
Increasing the Accessibility to Big Data Systems via a

Common Services API

Rohan Malcolm*, Cherrelle Morrison*, Tyrone Grandison#, Sean Thorpe*, Kimron Christie*, Akim Wallace*, Damian

Green*, Julian Jarrett*, Arnett Campbell*
*Computational Science Research Group

School of Computing and Information Technology

University of Technology

St. Andrew, Jamaica

#Proficiency Labs International

Ashland, Oregon

{1103314, 1007672}@students.utech.edu.jm, tgrandison@proficiencylabs.com, thorpe.sean@gmail.com, {0802085, 1007549,

1002336}@students.utech.edu.jm, jjarrett@utech.edu.jm, arcampbell@utech.edu.jm

Abstract — Despite the plethora of polls, surveys, and reports

stating that most companies are embracing Big Data, there is

slow adoption of Big Data technologies, like Hadoop, in

enterprises. One of the primary reasons for this is that companies

have significant investments in legacy languages and systems and

the process of migrating to newer (Big Data) technologies would

represent a substantial commitment of time and money, while

threatening their short-term service quality and revenue goals.

In this paper, we propose a possible solution that enables existing

infrastructure to access Big Data systems via a services

application programming interface (API); minimizing the

migration drag and (possibly negative) business repercussions.

Keywords — Big Data, Hadoop, API, Big Data Systems

I. INTRODUCTION

Amazon, Apple, Facebook, Twitter, Netflix, and Google
have set the standard for the current and emerging era in
computing. Their core business is built on collecting, analyzing
and monetizing large quantities of data. The magnitude of data
and the processing required (within user expectations of
response time) precludes the use of traditional data
management technologies and has ushered in the age of Big
Data [1].

Midsized and large organizations recognize the benefits of
investing in Big Data systems; but have been slow in their
adoption due to varying reasons [2, 3]. They range from lack of
necessary skills as data scientist to the financial uncertainty on
how one qualifies the tradeoffs on the return on investment
(ROI) in the short run as opposed to the log run outlook of a
business. Other concerns surround effort, value decay, service
degradation and disruption from porting current systems to
newer infrastructures and technologies. We purport that the
latter rationale can be partially mitigated by technology.

In this paper, we propose a mechanism for methodically
converting the current legacy enterprise application stack to
one that leverages the latest and greatest Big Data
technologies; while lessening the effort required and the

possible disruption to the firm’s value proposition and quality
of service agreements.

We begin by presenting the fundamentals: What is Big
Data? (Section II); and what is a typical Big Data stack and
how it works (section III). In section IV, we present our
proposal and discuss possible use cases (section V). Section VI
presents related work, followed by future work (section VII)
and conclusion (section VIII).

II. WHAT IS BIG DATA?

In the most basic of terms, Big Data refers to the collection,
processing and analysis of extremely large data sets usually at
scale of petabyte limits and beyond, especially for large scale
University laboratory environments like ours. The magnitude
and complexity of these data sets are very significant by way of
volume that it becomes extremely difficult to process using
contemporary database management tools or traditional data
processing applications. For Big Data systems, there are
normally challenges relating to capture, curation, storage,
search transfer analysis and visualization of these data sets [4].

The McKinsey Global Institute estimates that data volume
is growing 40% per year, and will grow 44 times larger
between 2009 and 2020 [4]. The rise in prominence of Big
Data stems from the value that can be extracted – correlations
that can spot consumer and or business trends, insight that can
be used to help with disease prevention, crime abatement,
traffic routing, security breach detection, product enhancement,
supply chain optimization, among others [4].

Formally, there is no official consensus on the scientific
definition of Big Data. Gartner, and the rest of the computing
industry, formally use the “3Vs” model as the basis for
describing Big Data [5]. In 2012, Gartner presented its updated
definition, which the industry’s de facto standard and states
that “Big Data are high volume, high velocity, and/or high
variety information assets that require new forms of processing
to enable enhanced decision making, insight discovery and
process optimization” [6]. In recent times, the dimensions of

value and veracity have been added to the list of important
characteristics of Big Data. Thus, the “5Vs” model is currently
the acceptable standard for Big Data.

1. Volume - this demonstrates large amounts of data
collected by organizations measured petabytes,
exabytes, zettabytes and even yottabytes worth of data
from multiple sources, e.g. sensors, social media,
smart digital devices, etc.

2. Velocity - this considers real-time processing and
analysis of large columns of data streaming in and out
of an organization.

3. Variety - this is concerned with varying forms of data
organization, i.e. structured, semi-structured or
unstructured, and in multiple modalities, i.e. free text,
video, audio, sensor data, logs, etc.

4. Value - this seeks to monetize through insight and
influence spending, cost-saving strategies and
optimizations.

5. Veracity - this addresses the integrity of data and their
respective sources, as they impact critical choices.

The “5V’s” model will be assumed for this paper. Now that
we understand what Big Data is, let’s examine the underlying
architecture.

III. TYPICAL BIG DATA STACK: WHAT & HOW

A typical Big Data stack has a data management platform

that distributes data across multiple machines, is fault-tolerant

and enables querying and analysis across multiple, disparate

machines, which may hold portions of the data being

examined.

To better illustrate the actual use and operation of a Big

Data stack, we will use the example of Hadoop, the de facto

Big Data platform standard.

A. Hadoop

Hadoop is an open-source implementation of Google
MapReduce, developed by the Apache Software Foundation
that allows large amounts of structured and unstructured data
sets to be handled quickly.

The Hadoop framework consists of two layers: Hadoop
Distributed File System (HDFS) and MapReduce. It is written
in Java and supported on any operating system platform. In
Fig. 1, we see the Hadoop architectural overview.

Hadoop accepts some form of data and splits it into
different portions across the cluster (this facilitates the
MapReduce algorithm so as not to burden a single machine).
After the completion of the maps, i.e. the tasks that run
simultaneously on all the relevant machines, they are all
gathered, reduced and written to an output file for storage [7].

Fig. 1. Hadoop Architecture Overview

B. Hadoop Distributed File System (HDFS)

HDFS enables the file systems on the local host machines
to be linked together to create one very large file system.
HDFS is built with the tenet that faults are a normal occurrence
(not an exception). Thus, HDFS always seeks to detect and
recover from faults quickly. It copies data across multiple
nodes to enable quick recovery in the event of node failure [7].

C. MapReduce

MapReduce is a programming model (an associated
implementation) for processing large data sets with a parallel,
distributed algorithm on a cluster [8].

MapReduce users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Fig. 2

illustrates the steps taken in a MapReduce job.

Fig. 2. Basic Structure of the MapReduce algorithm

Given this background on a standard Big Data stack, we
can elucidate on the interface that we propose to leverage this
stack.

paradigm to be the best suitable for this and in this paper will

carry out research aimed at either proving or disproving this

claim.

II. HADOOP

Hadoop is an open-source implementation of Google

MapReduce, developed by Apache Software Development

that allows large amounts of structured and unstructured data

sets to be handled quickly. The Hadoop framework consists of

two layers: Hadoop Distributed File System (HDFS) and Map

Reduce. It is supported on any platform, as it is written in Java

but is recommended to be used on a Linux operating system.

The image below depicts a graphical overview of the hadoop

architecture.

 Figure 1.0. The figure shows the overview of the

hadoop architecture.

A. Hadoop Distributed File System (HDFS)

HDFS allows the large amounts of data to be stored and

accessed across clusters. The file systems on local hosts are

linked together to create one very large file system. HDFS is

highly fault tolerant; Faults are treated as a normal occurrence

and not as an exception, with the goal to detect and recover

from faults quickly. To maintain reliability, it does what is

called data replication where data is copied across multiple

nodes; this is because it assumes nodes will fail, so there will

always be a node that the data can be retrieved from. HDFS is

also scalable, which means that new nodes can always be

added easily, without the system having to change any

protocols, or applications. Flexibility allows Hadoop to get

any amount of data in any format (structured or unstructured),

from multiple sources at a time. The image below shows the

HDFS structure containing the NameNode (master node) and

several slave nodes.

 Figure 1.1. The figure shows the structure of the

Hadoop File System(HDFS)

The Namenode is what manages t

h

e file system’s data, and

the data is stored in blocks, called data nodes, and each data

block is replicated across clusters. When running a query the

Namenode is first accessed to get information on the file data,

after which the real data block is accessed [11].

B. Map Reduce

Map reduction or formally known as MapReduce is a

programming model for processing large data sets with a

parallel, distributed algorithm on a cluster [3]. The

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key. Many real world tasks are

expressible in this model. Programs written in this functional

style are automatically parallelized (The ability of data being

process simultaneously and problems being divided into

smaller problems) and executed on a large cluster of

commodity machines. MapReduce runs on a large cluster of

commodity machines and is highly scalable, a typical

MapReduce computation processes many terabytes of data on

thousands of machines. The image below depicts the steps

taken in any MapReduce job.

 Figure 1.2: The figure shows the basic structure of a

MapReduce algorithm

paradigm to be the best suitable for this and in this paper will

carry out research aimed at either proving or disproving this

claim.

II. HADOOP

Hadoop is an open-source implementation of Google

MapReduce, developed by Apache Software Development

that allows large amounts of structured and unstructured data

sets to be handled quickly. The Hadoop framework consists of

two layers: Hadoop Distributed File System (HDFS) and Map

Reduce. It is supported on any platform, as it is written in Java

but is recommended to be used on a Linux operating system.

The image below depicts a graphical overview of the hadoop

architecture.

 Figure 1.0. The figure shows the overview of the

hadoop architecture.

A. Hadoop Distributed File System (HDFS)

HDFS allows the large amounts of data to be stored and

accessed across clusters. The file systems on local hosts are

linked together to create one very large file system. HDFS is

highly fault tolerant; Faults are treated as a normal occurrence

and not as an exception, with the goal to detect and recover

from faults quickly. To maintain reliability, it does what is

called data replication where data is copied across multiple

nodes; this is because it assumes nodes will fail, so there will

always be a node that the data can be retrieved from. HDFS is

also scalable, which means that new nodes can always be

added easily, without the system having to change any

protocols, or applications. Flexibility allows Hadoop to get

any amount of data in any format (structured or unstructured),

from multiple sources at a time. The image below shows the

HDFS structure containing the NameNode (master node) and

several slave nodes.

 Figure 1.1. The figure shows the structure of the

Hadoop File System(HDFS)

The Namenode is what manages t

h

e file system’s data, and

the data is stored in blocks, called data nodes, and each data

block is replicated across clusters. When running a query the

Namenode is first accessed to get information on the file data,

after which the real data block is accessed [11].

B. Map Reduce

Map reduction or formally known as MapReduce is a

programming model for processing large data sets with a

parallel, distributed algorithm on a cluster [3]. The

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key. Many real world tasks are

expressible in this model. Programs written in this functional

style are automatically parallelized (The ability of data being

process simultaneously and problems being divided into

smaller problems) and executed on a large cluster of

commodity machines. MapReduce runs on a large cluster of

commodity machines and is highly scalable, a typical

MapReduce computation processes many terabytes of data on

thousands of machines. The image below depicts the steps

taken in any MapReduce job.

 Figure 1.2: The figure shows the basic structure of a

MapReduce algorithm

IV. BIG DATA SERVICES (BDS) API

An API (Application Programming Interface) is a set of

rules and instructions that an application can follow to access

services and resources that are provided by another

application. More commonly, an API represents a set of

method or function calls that dictate the use of an underlying

object [9, 10].

This paper purports the creation of a Big Data Services

(BDS) API, which would facilitate the easy manipulation of

Big Data that are stored on separate platforms; with the

platforms potentially employing different languages, run-time

environments and frameworks.

The BDS API is platform and language independent;

allowing it to connect to and from any language or platform.

This also applies to legacy languages and systems

implemented in them.

The BDS API is focused on the goals of seamless

processing, communication, storage and sharing.

Big Data Processing: The BDS API allows for cross

platform processing of large data through the use of streams

and stream managers. This allows the user to split data

processing across several machines clusters as opposed to a

single cluster.

Fig. 3. BDS API Function

Language Communication: Through the use of Extensible

Markup Language (XML) and JavaScript Object Notation

(JSON) parsing, as well as a Language Knowledgebase (Fig.

3), the Semantic Analyzer (Fig. 3) of the BDS API is able to

provide cross language support.

Storage (on Legacy Systems): As previously mentioned,

traditional data warehousing systems cannot be updated

without a large investment of time and funds. The BDS API,

with its language communication support, allows data to be

passed between systems regardless of architecture or

programming language this allows legacy systems to

communicate with more modern systems.

Data Sharing: Stream collectors, built into the BDS API,

manage streams connections, and provide fault tolerance

mechanisms to allow large data sets to be shared reliably and

quickly.

In Fig. 3 below, we see that the BDS API may be utilized by

any number of applications working alone or collaboratively.

Here, we use Hadoop as an instance of a Big Data platform

(without loss of generality). When an application (or a set of

collaborative applications) wishes to communicate with the

Big Data platform, it connects to the BDS API through

streams1. A BDS API stream is similar to other conventional

streams [11].

This streaming interface allows easy communication

between the BDS API and the Big Data platform (Hadoop in

the current instance), without the need for a specific API for

every programming language.

Fig. 4 shows a simple example of how applications,

possibly coded in different languages, can communicate with

each other to work collaboratively towards an established

goal. In this specific scenario, there are three systems or

applications. As indicated earlier, each system has an

associated process stream.

Fig. 4. System/Application Communication using the BDS API

We color-code the process stream for each system: blue

represents System 1, green represents System 2, and yellow

represents System 3 (Fig. 4). In this situation, the current task

involves System 1 sending data (or a command), to the API,

that is processed and becomes readable for System 2. System 2

retrieves the information and sends data to the API, which

processes the command and sends the results to System 3.

System 3 processes the data and sends it back to the API for

processing then it sends it back to System 2 for the initial

process to be completed.

Given this illustration of how the BDS API may be used, we

will expound on the components of the BDS API.

1 A stream is a full-duplex bidirectional data transfer path between a process

in the user’s environment and one in the driver environment [11].

paradigm to be the best suitable for this and in this paper will

carry out research aimed at either proving or disproving this

claim.

II. HADOOP

Hadoop is an open-source implementation of Google

MapReduce, developed by Apache Software Development

that allows large amounts of structured and unstructured data

sets to be handled quickly. The Hadoop framework consists of

two layers: Hadoop Distributed File System (HDFS) and Map

Reduce. It is supported on any platform, as it is written in Java

but is recommended to be used on a Linux operating system.

The image below depicts a graphical overview of the hadoop

architecture.

 Figure 1.0. The figure shows the overview of the

hadoop architecture.

A. Hadoop Distributed File System (HDFS)

HDFS allows the large amounts of data to be stored and

accessed across clusters. The file systems on local hosts are

linked together to create one very large file system. HDFS is

highly fault tolerant; Faults are treated as a normal occurrence

and not as an exception, with the goal to detect and recover

from faults quickly. To maintain reliability, it does what is

called data replication where data is copied across multiple

nodes; this is because it assumes nodes will fail, so there will

always be a node that the data can be retrieved from. HDFS is

also scalable, which means that new nodes can always be

added easily, without the system having to change any

protocols, or applications. Flexibility allows Hadoop to get

any amount of data in any format (structured or unstructured),

from multiple sources at a time. The image below shows the

HDFS structure containing the NameNode (master node) and

several slave nodes.

 Figure 1.1. The figure shows the structure of the

Hadoop File System(HDFS)

The Namenode is what manages t

h

e file system’s data, and

the data is stored in blocks, called data nodes, and each data

block is replicated across clusters. When running a query the

Namenode is first accessed to get information on the file data,

after which the real data block is accessed [11].

B. Map Reduce

Map reduction or formally known as MapReduce is a

programming model for processing large data sets with a

parallel, distributed algorithm on a cluster [3]. The

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key. Many real world tasks are

expressible in this model. Programs written in this functional

style are automatically parallelized (The ability of data being

process simultaneously and problems being divided into

smaller problems) and executed on a large cluster of

commodity machines. MapReduce runs on a large cluster of

commodity machines and is highly scalable, a typical

MapReduce computation processes many terabytes of data on

thousands of machines. The image below depicts the steps

taken in any MapReduce job.

 Figure 1.2: The figure shows the basic structure of a

MapReduce algorithm

BDS API

Big Data Platform

 Cobol

Haskell

Prolog

…..

…..

…..

Enterprise App

Stream
Collector

Semantic
Analyzer

XML &
JSON Parser

 Language
Knowledgebase

A. BDS API Components

As shown in Fig. 3, the BDS API has four (4) distinct

components: the Stream Collector, the Semantic Analyzer, the

Language Knowledgebase and the XML and JSON parser.

1) Stream Collector

This component stores and manages all aspects of the API

related to stream connection. The Stream Collector also

contains information about all known languages’ stream

methods and the criteria required to connect successfully and

efficiently to all language streams. The Stream Collector is

normally the sole part of the API that an (external) application

communicates with. The Stream Collector acts as the

coordination point that communicates with the other BDS

components to accomplish a given task. This single entry and

exit approach enables uniform enforcement of security

constraints. On the contrary, this also results in the Stream

Collector potentially becoming a performance bottleneck.

Hence, we have designed it with bottleneck detection in data

processing in an attempt to avoid this problem. The Stream

Collector also contains functionality for fault tolerance, which

enables this component to keep data flowing at all times.

2) Semantic Analyzer

Semantic analysis is the science of figuring out the

meaning of linguistic input [12]. Semantic analysis deals with

processing of an entered language in an effort to gain some

knowledge of what the data entered should represent.

The BDS API uses semantic analysis to gain knowledge

about what the application wants to pass, such as structures,

datasets and other forms of data. Through this process the raw

data can be identified and then converted to a new format

fitting the language to which it will be passed.

Since the Semantic Analyzer requires quite a bit of

knowledge about the programming languages only a few

languages (i.e. C, Java, Cobol, FoxPro and Erlang) were

selected for version 1 of the BDS API and on future iterations

more languages will be added. In a nutshell, this component

allows the BDS API to understand varying structures of the

different languages and handle them effectively.

3) Language Knowledgebase

To do semantic analysis, the Semantic Analyzer has to

have knowledge about the structure of the language. The

Language Knowledgebase stores all information related to a

language in respect to the needs of the BDS API.

At the core, the knowledgebase is a warehouse of

structures, standards and functions that are most commonly

used in each programming language. The major drawback of

using this design is that it requires the storage of a potentially

large amount of data. It will also take time for specific data to

be found and updated (as languages evolve). To address this

issue, the knowledgebase uses a clustering technique where

languages that use similar structures for certain instances, are

grouped together to save on space and time overhead to access

it.

4) XML and JSON Parser

Both XML and JSON are easily parsed [13, 14], which

makes them good candidates for cross language support and

communication. This component can create and read data in

these formats. The benefit is that XML and JSON complies

with current standards; also, we are able to work with

applications that are already built to expect data in these

formats.

Fig. 5. BDS API Component Communication

Fig. 5 shows the communication between each component

of the BDS API. The Stream Collector only communicates

with the Language Knowledgebase when it is either

establishing a new stream or terminating an existing stream.

For all other issues, the Stream Collector communicates with

the Semantic Analyzer. Upon receiving a request from the

Stream Collector, the Semantic Analyzer deciphers the

message with the help of either the Language Knowledgebase

or the XML/JSON parser and then re-constructs a new

message based on the encoding criteria for the language to

which the message will be sent. The result is then returned to

the Stream Collector, which sends the message through the

stream to the destination application. The destination

application may or may not be the application that made the

initial call.

B. Initial set of BDS API Methods/Functions

The BDS API contains several functions/methods aimed

at, but not limited to, the following: connecting streams,

interfacing with Hadoop (we use this as the Big Data platform

for version 1 of the BDS API), and transferring of files. Due to

the number of functions, only a few where selected for

presentation in this paper; based on their importance.

1) General Purpose

connect/0 – The connect/0 function connects an

application stream to the BDS API. This function returns a

reference number to be used for later connections.

connect/1 – The connect/1 function connects one

application stream to another application stream or to Hadoop.

It returns a connection reference to be used later by other

functions. The function accepts 1 parameter of type string,

which can either be the reference number for the stream that it

should connect to or the word ‘hadoop’ to identify connection

to the Hadoop instance that it is running inside the API.

connect/2 – The connect/2 function connects one

application stream to another application stream and also

specifies the type of the data that should be passed through the

stream. It returns a connection string to be used in later

functions. The type of data can either be: XML (representing

that data should be passed in XML format), JSON

(representing that data should be passed in JSON format) or

native (representing that data should be passed in a byte array

format).

terminate/1 – The terminate/1 function accepts a

connection string and terminates the connection. It should be

noted that after this function is used the connection string will

become unusable and errors will be thrown if an attempt is

made to use it.

2) Language Communication

send_data/2 – The send_data/2 function allows data to be

sent over a stream. It accepts two (2) parameters: a connection

string (which must be an un-terminated reference string) and

the data that should be passed. It returns a value indicating

whether the data was successfully sent or not.

send_data/3 – The send_data/3 function allows data to be

sent over a stream. It accepts three (3) parameters: a

connection string (i.e. an un-terminated stream that has been

returned from either connect/1 or connect/2 function), the data

that should be passed, and the amount of bytes it will take up.

This function is used when the application or language

accepting the data needs to prepare some storage mechanism

before persisting the data. It returns a value that states whether

the data was successfully sent (or not).

send_data/4 – The send_data/4 function, like its

predecessors, sends data across a connection, but it allows for

the user to override the type of data to be transferred for one

transaction. This is used in cases where the user needs to send

data in a specific format once and wishes not to create a new

connection. It accepts four (4) parameters: a connection string

(similar to the other cases), the data that should be passed, and

the amount of bytes it will take up (this value can be declared

as null, this will let the API know that no byte size should be

transferred) and the type of data to be passed. It returns a

value stating if the data was successfully sent.

3) Hadoop

mapper/2 – The mapper/2 function allows the user to set

the location of the mapper file that will be used in the Hadoop

MapReduce operation. It accepts two (2) parameters: a valid,

un-terminated connection string, and the location of the

mapper file on the system. It returns a value that states if the

value was set.

reducer/2 – The reducer /2 function allows the user to set

the location of the reducer file that will be used in the Hadoop

MapReduce operation. It accepts two (2) parameters: a valid,

un-terminated connection string, and the location of the

reducer file on the system. It returns a value that states if the

value was set.

set_input_location/2 – The set_input_location/2 function

allows the user to set the input file or folder location that will

be used for the MapReduce operation. This function accepts

two (2) parameters: a valid, un-terminated connection string

and the location of the input file or folder on the system. It

returns a value whether true or false stating if the value was

set.

set_output_location/2 – The set_output_location/2

function allows the user to set the output file or folder location

that will be used for the map reduce. This function accepts two

(2) parameters: a valid, un-terminated connection string and

the location of the output file or folder on the system. It

returns a value that indicates if the value was set.

run_map_reduce/0 – the run_map_reduce/0 function

starts the Hadoop MapReduce job. If any of the above

functions are not properly executed, errors are thrown.

4) Data transfer

transfer_data/3 – The transfer_data/3 function allows for

data to be sent across applications through the use of the BDS

API streams. It accepts three (3) parameters: a valid, un-

terminated connection string, the data that should be passed,

and a Boolean value to indicate whether to send in parallel or

not. This function may be viewed as being the same as the

send_data functions, but it differs in the fact that it is used for

transferring large data sets across platforms while the

send_data functions are used for simple message

communications.

Now that we have introduced the BDS API, let’s explore

how it can be used in real world situations.

C. Implementation

The BDS API as a proof of concept was implemented as a

standalone server written in the JAVA programming language,

using server socket and streams to provide cross

communication language support. Data is transferred as byte

arrays using the UTF-8 Standard over these streams. Byte

arrays were chosen because the languages chosen for version

one all adhered to the UTF requirement.

To track all application currently connected to and through

the BDS API the HashMap class in Java was used for quick

and easy validation of elements. Upon successful connection

sessions to the API from a client, each session is assigned a

unique reference number. This reference number is required

for every other command used on the API excluding the

Hadoop commands. Also this reference number is stored in

the HashMap with other information about the connected node

so that it can be easily acquired if so desired by another

connecting node. To communicate with a subsequent client

session which is registered with the API a further connection

needs to be initiated (see the connect/1 or connect/2

documentation in Section IV sub section B) this connection is

also given a reference number to be used through the

application.

As suggested above the byte array is used to transfer data

between the end users of the API. Once the byte array is

received it is converted into the format which the API requires

(this is based on which block of the execution the API call at

that instance has dereference). For example if the user is

currently attempting to perform an API command byte array

would be converted into a string and then checked against

known commands. After a successful match then the

command would execute as is required. An example of a

command can be seen below in listing 2.

In handling various data structures such as lists, arrays and

so on; an approach was taken where the data structure

requirement were sent blocks at a time to the API which in

turn would then be sent to the receiving node as plain text and

a special identifier used to mark the ending of the stated

structure.

For syntax and semantic analysis of the data structures

referenced by the BDS; each language instance that is

supported by the BDS launches its own instance or function

call to the syntax and semantic parser invoked as stored

procedures from the BDS API. In other words where the BDS

API as service runs a non native language call, the various

data structure translations of the non native language API is

decoded by the syntax and semantic parser translation routines

running within the BDS. To use the translation process

features of our BDS API the convert/4 command is used (this

command is not explained in the list above), upon executing

this command and passing the required input parameters (i.e.

language conversion input source, language conversion output

source, the language name, language paradigm type, the name

of the file to be returned at the language output source and the

data content of the file involved in the language translation).

The BDS API will read data parameters given data line by line

each time looking for mentioned specific keyword input

parameters so that it can identify the feature of the language to

be converted. We make the tacit and complicit assumption that

the correct language keyword input parameters have been

specified to the BDS API. Upon finding this keyword it then

parses the statement and finds the corresponding feature in the

language it is converting to, then the parsed statement is then

reconstructed in the required format. An example of a C to

Java conversion can be seen below

Statements such as int age would be noticed through syntax

analysis as declarative statements while a printf statement

would be recognized as an output statement, the code snippet

would be converted to its Java equivalent as seen below.

#include <stdio.h>

int main()

{

 int age;

 printf("Enter age: ");

 scanf("%d",&age);

 printf("Your age is: %d \n",age);

 if(age>18){

 printf("you are old!!!");

 }else{

 printf("you are young!!!");

 }

 return 0;

}
Listing 3: Showing a simple C code

if (command.equals("send_data/2")) {

byte[] reference_byte = new byte[1024];

istream.read(reference_byte);

String reference = new

String(reference_byte).trim();

byte[] message_byte = new byte[1024];

istream.read(message_byte);

String message = new String(message_byte).trim();

date = new Date();

logged.info("Attempting to retrieve connection for

reference: " + reference + ": " +

dateFormat.format(date));

if (connectionList.get(reference) != null) {
logged.info("Successfully retrieved connections for

reference: " + reference + ": " +

dateFormat.format(date));

ConnectedSocket connection =

connectionList.get(reference);

SocketClass local =

connection.getSocketToSendToFromRefere

nce(this.communicateID);

logged.info("Attempting to send message: " +

message + " across connection refere: " +

reference + ": " + dateFormat.format(date));

String to_return = "Message " + message + "

sent through conencted stream with

reference " + reference;

byte[] result_sender = to_return.getBytes();

byte[] result_receiver = message.getBytes();

ostream.write(result_sender);

local.os.write(result_receiver);

logged.info("Sent message: " + message + "

across connection reference: " + reference +

": " + dateFormat.format(date));

} else {

date = new Date();

logged.info("Retrieval of connection failed, no

such connection reference ("+reference+"):

"+dateFormat.format(date));

String to_return = "No socket connection exist

with that reference.";

byte[] result = to_return.getBytes();

ostream.write(result);

}

}
Listing 2: Showing sample code for the send_data/2 command

byte[] word = new byte[1024];

istream.read(word);
String command = new String(word).trim().replaceAll("\\s+","");

Listing 1: Showing array to string conversion

Concurrency management is handled through threads in the

JAVA programming language, upon first contact with the

BDS API the connection is given a threaded class to be used

throughout the life of the communication, this class contains

the command references that are used to execute the

commands on the API and also contains a static hash map

which is used to track other connected clients and a second

hash map to store connections between clients. The static list

contains socket references for each client, this allows for each

threaded class to communicate with any connected node

without being required to create that specific socket

connection. A thread is terminated by the client sending the

terminate command. Fault tolerance is achieved via a

combination of validation steps by the use of try/ catch blocks.

The designers of the API believed checking for failures is a

key debugging requirement of the BDS. The default

assumptions Java’s exception handling are well understood as

suitable fault tolerance and security feature and hence explains

our preference in how we designed this API. Before any

command can be executed the static hash map class is checked

to ensure that the current running thread exceptions for

example is valid in its existence (otherwise the transaction

thread is immediately terminated at the function call), if the

command to be executed requires communication between

two (2) of the BDS API’s clients then the other client’s

reference number is also checked for validation along with the

overall client connection. If any of these cannot be validated

then the process will not be executed and the relevant parties

notified. Each failure or exception thrown in the API will be

logged for review later on, this review will be used to aid in

making the API more resilient. Also the threaded class from

which the exception was raised will force cancellation on the

process which triggered the exception and alert the relevant

parties of this exception. No other process will be affected by

the failure.

V. USE CASE SCENARIOS

We have previously hinted at ideal usage scenarios for the
BDS API. In this section, we will explicitly highlight the most
compelling cases.

A. Migrating Existing Data Systems

The BDS API provides easy migration of system

information; with regards to the data involved. This API

allows for large unstructured data sets to be passed from one

system to the next through the use of file streams and fault

tolerant atomic states embedded within our code design.

System migration is a hassle because companies have to

spend excessive amounts of time and resources preparing the

data for transfer. They sometimes require the building of

facilities so that nothing obstructs the transaction; the BDS

API would provide an alternative solution to this problem.

Through the use of file streams that connect to the

different systems, data can be passed easily from one system

to the next without the hassle that exists in a normal data

migration. Also the built-in fault tolerant model of the API

would add a failsafe to protect the loss of data.
 Assume there exists System A, and an existing requirement
to migrate the resources found on System A to another existing
System B. The BDS API user would utilize the function
connect/0 and connect/1 to connect both Systems together. The
transfer_data/3 function would then be called by System A;
passing in the third value as true to start the streaming of data
to System B and the API would handle all necessary fault
tolerance information and data transfer. After the data has been
migrated System B would then check to ensure all packets were
received and then terminate its connection.

B. Multiple Platforms Performing a Single Task

As the BDS API is platform independent, it enables cross-

platform task execution and management. The BDS API could

turn a normal single node process into a multiple node process

through the utilization of its streaming interface and the

management of these streams that it directly provides. For this

type of support the API would need to be able to manage

concurrent states and fault tolerant like our BDS API.

Consider some Application A that exists on several

different systems, with all Application A’s performing the

same task. The BDS API, could connect all Application A’s to

a single master application and then utilizing the connect/0,

connect/1 and send_data functions could distribute individual

commands to the said applications. The API would further

gather responses from the various slave nodes. The API would

handle all platform specific concerns and distribute the correct

commands accordingly. This enables the management of

several applications across platforms.

C. Language Interoperability

As mentioned earlier, the BDS API supports

communication among different programming languages;

using the appropriate interface descriptor language (IDL) as

required.

For example, consider an application that is built in Cobol

that has a need to communicate with an application that is

built in C#. Since the language utilizes the API as a medium it

would allow for established session communication between

the languages. Our API supports IDLs with the Cobol Object

plug-ins. This converter allows Cobol, which is highly

procedural, to now run as an object-oriented feature that is

import java.util.Scanner;

public class hello{

 public static void main(String[] args)

 {

 Integer age;

 System.out.print("Enter age: ");

 Scanner scan = new Scanner(System.in);

 age = scan.nextInt();

 System.out.print("Your age is: "+ age+" \n");
 if(age>18){

 System.out.print("you are old!!!");

 }else{

 System.out.print("you are young!!!");

 }

 }

}
Listing 4: Showing the C code of listing 1 transformed into Java code

popularly referred today as OCobol. This scalability feature of

the BDS API enables proper acknowledgement of any external

language interfaces using these IDL plug-ins. Built into our

API design is a compiler syntax and semantic analyzer that

allows for atomic state reduction of any language input to

safeguard against side effects. Hence, when a message is

passed from one language to the next it can be easily

converted unambiguously. We have deliberately not indicated

any preference in programming language paradigm as we

believe that with time, suitable interface descriptors across

language platforms will be seamless; especially as attempts

are made to infuse extensible API support or IDLs between

legacy and emergent languages.

VI. RELATED WORK

The idea of making Big Data platforms, like Hadoop, more
accessible is not novel. There are several ongoing efforts in the
well established literature that seek to extract the benefits from
storing, organizing, analyzing and searching Big Data. In this
section, we present the related literature and how our own work
fit into this emergent space. To date the BDS API is the only
proof of concept tool as far as we have seen in the peer
reviewed literature that provide multi-tier interface descriptive
language functionality for the big data environments.

A. HIVE

Hadoop requires developers to write custom programs that

are hard to maintain and reuse. Hive was created to solve this

problem. It is an open source data warehousing solution built

on top of Hadoop and it support queries expressed in a SQL-

like declarative language called HiveQL. Statements in

HiveQL are compiled into MapReduce jobs and executed

[15]. Our BDS API dereferences these constructs to support its

full program execution.

Where Hive was built to aid developers in writing better

MapReduce jobs that are efficient and scalable it is clear that

real benefit is to assist language developers who need to work

on an enterprise scale with this Big Data. However, Hive is

limited in its usage because it largely deals with bulk data sets

even though it uses similar constructs to that of SQL which

exists in Relational Databases. HiveQL or Hive should not be

viewed as a relational database management system (RDMS)

but as a batch processing integration tool for the Hadoop

framework. A prime example is that Hive does batch deletes

as opposed to individual deletes which are allowed in the

RDMS. It should also be noted that it doesn’t offer support for

cross-platform or inter-language communication that is now

supported by our BDS API as a key distinguishing feature on

how we supplement the gap in this literature.

B. LiquidFiles

We model components of our BDS API using LiquidFile

architectures. LiquidFiles is a web-based API that accepts

medium to relational database files and splits them up into

smaller blocks of data to be proccessed. These smaller blocks

of data are normally around 100 megabytes in size. It is easily

scalable and can work with all files sizes. It also uses XML

file formatting to communicate with multiple languages and

can built-in security features [16].

As LiquidFiles is ideally web-based, it assumes default

Internet connectivity to maintain a persistent state . This

feature may be a handicap for users without persistent Internet

connection. Currently, LiquidFiles do not have support for

unstructured data sets running on Hadoop. Our naïve toy

experiment testing shows that liquidfiles persistent state

connectivity to handle unstructured petabyte or exabyte file

limits is unstable. This requires traditional developers to create

customized connection mechanisms to these platforms which

would handle these new data formats. This transition however

is expensive both in terms of time, money and techincal

infrastructure adoption unless someone can prove this to us

otherwise, but we have not seen any new evidence to show

this at least up to the time we had been preparing this paper.

C. BULK API

Our efforts were also motivated by looking at the Bulk API,

which is used to query or modify a large number of records

asynchronously. This was achieved by submitting batches that

are running as background processes. It is REST-based2 and is

optimized for handling relatively large sets of structured data.

Bulk API is designed to handle records when the data sets

contain a couple thousands to millions of records up to mega-

byte and even terabyte scale [17]. We reasonably argue that

our BDS API enables a wider range of functionality than Bulk

API that handle peta-byte scale data limits and beyond.

D. Google BigQuery

Google BigQuery is a tool, which enables users to right fast

SQL-like queries (the official dialect used is BigQuery's SQL

dialect) against large data sets using the processing power of

Google [18]. BigQuery can be accessed by varying means

such as: a browser tool, a command line tool, calling the

BigQuery REST API or client libraries (JAVA, PHP and

Python) [18]. Data however either has to be stored on

Google's cloud server or streamed into the API for use.

The difference between our BDS API and the service

offered by BigQuery is the scalable multiple language syntax

support as compared to google BigQuery that adhere to a

single native SQL dialect.

E. Oracle XQuery

Oracle XQuery for Hadoop is a transformation engine for

semi-structured big data [19]. Oracle XQuery runs in the

XQuery language and it transforms commands into a series of

2 REST (Representational state transfer) is an architectural style consisting of

a coordinated set of constraints applied to components, connectors, and data
elements, within a distributed hypermedia system.

MapReduce jobs that are executed (in parallel) on the Hadoop

clusters. With this solution, one can focus on data movement

and transformation logic, instead of using Java or MapReduce;

which carry their own levels of complexities, without

sacrificing scalability or performance [19]. Unlike other

Hadoop vendors, the data to be processed XQuery does not

only have to be located on the Hadoop Distributed File System

(HDFS), but it can also be stored in an Oracle NoSQL

Database. Oracle’s Big Data also contains advance R

connectors for better statistical algorithm applications [20].

Oracle XQuery provides good vendor specific support for

its user-driven queries running in NoSQL databases albeit

Hadoop service enabled or not. We also realize that one of the

limitations of the Oracle XQuery over Hadoop is its lack of

support for non native language communication or process

management APIs. These observations have driven our

motivations to design the BDS API as an open source scalable

API that improves on the Oracle XQuery functionalities.

VII. FUTURE WORK

The research team recognizes that there is a lot of further
work to be done and as such have developed a roadmap for
same.

A. Knowledge Base Constraints

Currently, the BDS API parser depends on knowledge of

the different languages to properly function (as at present the

current version only supports a limited set of language

scalabilities). To address this, research will be undertaken to

create a new binary language that runs the BDS API as its own

embedded virtual machine (VM) operating system language.

This virtual machine language API will autonomously convert

binary data between non native language instances to ensure

we strive for the ideal when we mention scalability and

platform independence.

B. Restricted Local Customization Capabilities

Currently the system is incapable of allowing local

customization of platforms via a suitable visualization front

end. We mostly drive the system functions of the BDS API

using command line interactivity and limited graphical end

user interface (GUI) support. In other words it would be

convenient for us to have a sophisticated front end, with

intelligent human computer interactivity (HCI) to the BDS

API. This would allow the end users of our tool to seamlessly

visualize all the language interdependency communication

scenarios across multiple language platforms that are

interacting on this Hadoop framework using our BDS API.

This approach invariably would also allow us to build access

control functionalities into the GUI front end version of the

BDS API as a security feature that will allows us to separate

the API from direct manipulation while it provides customized

and personalized interfaces for the end user interaction within

the scalable language hadoop environments.

C. Mobile Computing and Communication Capabilities

We intend to extend the BDS API as a mobile application

support feature. This opportunity allows us to expand the

outreach of access to end users of our tool e.g. mobile

companies.

D. Increased Platform Support

The current instance of the BDS API only supports

Hadoop. We will generalize the API to support any arbitrary

Big Data platforms in future.

E. Autonomy

Where our BDS API can run as its own autonomous agent,

the future design should allow for dynamic state interaction

with big data platforms, based on unsupervised goal setting on

task. This could allows us to define autonomous MapReduce

functionalities that will enable improved computational

efficiencies on both unstructured data and meta data now

generated in these large environments. It goes without saying

that our tool represents an Internet of Signs (IOS) philosophy

that should be able to differentiate large state data structures

sets in real time, apply the suitable syntax and semantic data

transaction analysis as a feature of the API parsing. These

underlined new functionalities become relevant as Big Data

platforms keep changing.
The suggestions described above fits into the realm of other

ongoing work within our research group on autonomous
interface descriptive languages (IDL); where we explore
various deep learning techniques as a neural network language
translation analysis service. These expectations allows to
design the BDS API as a “dynamic learning service”.

Parts of the current work on the BDS API will be available
within an open stack so that contributing developers can reuse
and test new embedded functionalities. This approach will
allow us to gain constructive feedback on the approaches we
have used, while we improve our existing versions.

VIII. CONCLUSION

Given the need for firms to extract value from the vast
amounts of sparse flowing data that is currently being
generated from within various ubiquitous software as
service(SAAS) programming language applications
environments found everywhere today, this need exacerbates
the concerns that finding suitable tools that harness the power
of existing and future Big Data platforms cannot be
underestimated. In this paper, we presented the Big Data
Services (BDS) API as a proof of concept tool to assuage the
concerns around migration and leveraging contemporary
unstructured data within evolving data center environments.
The BDS API’s contributory support for legacy and emergent
languages running over a Hadoop framework minimizes the
need for full-scale system migration to new independent
language platforms. This work is the first of its kind anywhere
in the current literature as far as we know.

Through the use of language translation analysis techniques
which apply the use of data streams, the BDS API
communicates seamlessly with such data streams (i.e. petabyte
scale and greater). The BDS API is language independent by
design as it allows inter-process communication between tiers
of SAAS enabled legacy and emergent languages. The API has
in-built fault tolerance, concurrency management and

bottleneck detection features that allows it to be an enabler for
large unstructured data center environments.

REFERENCES

[1] P. Simon. Too Big to Ignore: The Business Case for Big Data. N.p.:
Wiley, 2013. ISBN-13: 978-1118638170.

[2] H. Barwick, “Lack of in-house skills a barrier to big data adoption in
A/NZ: report” CIO Magazine, November 28th, 2013. Retrieved from
http://bit.ly/1dS41yD on February 19th, 2014.

[3] P. Simon, “Why Big Data In The Enterprise Is Mostly Lip Service,”
Information Week, Feb 18th, 2014. Retrieved from
http://ubm.io/MeGug1 on Feb 19th, 2014.

[4] Oracle. "Oracle: Big Data for the Enterprise."
http://www.oracle.com/us/products/database/big-data-for-enterprise-
519135.pdf.

[5] M. Beyer, "Gartner Says Solving 'Big Data' Challenge Involves More
Than Just Managing Volumes of Data." Gartner. June 27, 2011.
Retrieved from https://www.gartner.com/newsroom/id/1731916 on
February 19th, 2014.

[6] D. Laney. "The Importance of 'Big Data': A Definition." Gartner. June
21, 2012. Retrieved from https://www.gartner.com/id=2057415 on
February 19th, 2013.

[7] R. Natarajan, "Apache Hadoop Fundamentals - HDFS and MapReduce
Explained with a Diagram," The Geek Stuff. Retrieved from
http://bit.ly/MeI8OI on Feb 19, 2014 .

[8] D . Jeffrey, and S. Ghemwhat, "MapReduce: simplified data processing
on large clusters." Communications of the ACM - 50th anniversary
issue: 1958 - 2008 1 Jan. 2008: 107-13. Print..

[9] 3Scale. (n.d.). What is an API. In 3Scale. Retrieved February 19, 2014,
from http://www.3scale.net/wp-content/uploads/2012/06/What-is-an-
API-1.0.pdf.

[10] Ross, D. (n.d.). How to Leverage an API for Conferencing. In How Stuff
Works. Retrieved February 19, 2014, from
http://money.howstuffworks.com/business-communications/how-to-
leverage-an-api-for-conferencing1.htm

[11] Oracle. "Overview of STREAMS." http://docs.oracle.com/cd/E19683-
01/806-6546/6jffu9853/index.html.

[12] A. Klapuri, "Semantic analysis of text and speech." Institute of Signal
Processing, Tampere University of Technology.
http://www.cs.tut.fi/sgn/arg/klap/introduction-semantics.pdf.

[13] E. T. Ray, Learning XML. 2nd ed. N.p.: O'REILLY
http://oreilly.com/catalog/learnxml2/chapter/ch02.pdf.

[14] P. Hunlock, "Mastering JSON (JavaScript ObjectNotation)."
http://www.ebooks.shahed.biz/JS/JSON/Mastering_JSON_%28JavaScri
pt_Object_Notation%29.pdf.

[15] A. Thusoo, S. S. Joydeep, J. Namit, S. Zheng, C. Prasa, et al. A Petabyte
Scale Data Warehouse Using Hadoop. N.p.: InfoLab Stanford
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf.

[16] LiquidFiles. "LiquidFiles is a Virtual Appliance that helps companies
and organisations Send & Receive Large Files, Fast & Securely."
http://www.liquidfiles.net/.

[17] SalesForce. SOAP API Developer's Guide. Vol. 30. N.p.:
salesforce.com, 2014.
http://www.salesforce.com/us/developer/docs/api/apex_api.pdf.

[18] Google Developers. "Google Big Query.".
https://developers.google.com/bigquery/.

[19] Oracle. "What Is Oracle XQuery for Hadoop?."
http://docs.oracle.com/cd/E51174_01/doc.24/e51161/oxh.htm#BDCUG
526.

[20] A. Woodie, "Oracle Expands Use of Cloudera Hadoop in Big Data Kit."
Data Nami. http://www.datanami.com/datanami/2013-11-
13/oracle_expands_use_of_cloudera_hadoop_in_big_data_kit.html.

https://www.gartner.com/newsroom/id/1731916

