
Enabling Security Uniformly Across Cloud Systems
Sean Thorpe

University of Technology
237 Old Hope Road
Kingston, Jamaica

thorpe.sean@gmail.com

Indrajit Ray
Colorado State University

Fort Collins, USA
indrajit@cs.colostate.edu

Tyrone Grandison
IBM Almaden Research

Silicon Valley
USA

tyroneg@us.ibm.com

ABSTRACT
Compute cloud interoperability across heterogeneous distributed
virtual machines (VM) is an emergent and challenging problem.
Security administrators are currently unable to definitively audit
cross platform transactions. In order to provide monitored cross
platform support, this paper represents a first attempt to model
security in cloud systems. A source theoretical policy framework
is defined and a formal mapping model articulated that binds to
specific VM attribute functional policies, which are used by the
cloud environments within which the security administrator has
applications deployed. These policies can be used to affect
tangible yet flexible access control measures within these abstract
environments. Our novel approach refers to the use of a VM
attribute specification language that we refer to as the Global
Virtual Machine Attribute Policy Auditor (GVMAPA).We use
GVMAPA to express the multilevel security, hierarchical attribute
based policies and organizational constraints such as separation of
duty that are urgently needed within this VM administrator
controlled environment. Our work is inspired by previous work in
[7, 11, 12, 13] and referenced based on NIST guidelines.

General Terms
Security, Specification, language, standardization

Keywords
Access controls, Virtual Machine, Attribute, Policy, Auditor.

1. INTRODUCTION
We envisage fine grained access control (AC) systems to allow a
security administrator to specify relations between AC attributes
for both homogenous and heterogeneous dynamic virtual compute
clouds. With this capability, an AC system is able to maintain
hierarchical orders of the attributes of the AC elements (subjects,
actions, objects) as observed on most static grids. By the same
extension we should be able to scale this concern to a virtual
compute cloud and suitably provide level of assurances (LOA)
against the use of the attribute relations. This concern underscores
the relevance for our GVMAPA within the global system
administrator environment.

The expression of privilege inheritance relations is essential for
many popular AC models such as Bell-La Padula [1] and Biba
[2] (BLPB) of Multilevel Security (MLS) [3], and Hierarchical

Role Based Access Control (HRBAC) [4] as well as constraint
policies such as Separation of Duty (SOD) [5].

The syntactic and semantic supports of attribute relation (AR)
specifications in AC mechanism or languages allow not only
accurately specifying but also efficiently enforcing the relation-
based AC models and policy constraints. The specific advantages
of such capabilities include:

 Specifying hierarchical relations for the inherit or
inherited privileges of subjects, actions, and objects in
AC policies. For example, if subject X is related to
subject Y then subject X inherits all the access privileges
of subject Y.

 Efficient management of Ac rules, such that AC policy
administrator can modify privileges based on attribute
groups and relations without leaking access permissions.
Also, through a GUI it is possible to display all the
linkages of existing related attributes, thus providing a
complete view of the current
privilege assignments.

Performance enhancement for evaluating access requests, because
the AC system does not have to go through all the AC rules to
collect attribute information fort the grant decision if higher level
attributes of the request can be found to match the rule. As
measure of the functionality for our Virtual Machine attribute
policy engine there is the need for an authentication algorithm hat
captures the assurance levels in identifying a VM user. In this
capacity the policy engine authorization and decision making
exhibits considerations as a clear LOA interaction agreement.
We seek to demonstrate the novel virtues of an AR mechanism
from a relation-based AC mechanism – for a Global Virtual
Machine Attribute Policy Auditor (GVMAPA), which includes a
server engine called Policy Server (PS) and a policy management
system. We scale this Policy Machine definition [7] [8] for reuse
and extension within our GVMAPA. PS and GVMAPA together
enable enforcement of multiple access control policies within a
single, unified virtual machine system administered environment.
GVMAPA composes and combines access control policies from a
relative set of atomic properties completely expressed with
mappings and interrelationships of the ARs on three basic elements
– Subject Sets, object Sets, and Operation Set. Mappings and
interrelationships of ARs are enforced with a database and a fixed
set of functions.
The components of the GVMAPA Services architecture include:
identity logging, monitoring, aggregation, requirement and
registration. All these services are collaborative in nature, and
demands considerable synchronization constraints as a measure of

the system’s effectiveness. We’ll speak to the component detail
architecture of the GVMAPA as the subject of an independent
paper.

This current paper however contains six sections. Section I
introduces the AR of AC policies adopted for a VM. Section II
explains AR Implementation mechanisms for the GVMAPA
scheme. Section III introduces the architecture and functions of
GVMAPA. Section IV specifies the GVMAPA mechanism for
specifying ARs for AC models and policy constraints. Section V
compares GVMAPA mechanisms with related work. Section VI is
the conclusion and future work

2. AR IMPLEMENTATION DESIGN
GVMAPA provides an AC policy specification language as well
as generic architecture components [Policy Decision Point (PDP),
Policy Enforcement Point (PEP)] for the AC enforcement
functions. The regular expressions specification constraints for
this GVMAPA are adopted from work in [7, 8, 11].

(1) PS: T+ P + PCA + O
(2) T: S + R + A + E
(3) P: T + RL +RCA + O
(4) RL: T + C + E

where PS is the Policy Set, T is the VM Target, P is the VM
Policy, PCA is the VM Policy Combination Algorithm, O is the
Obligation, S is the Subject, R is the Resource, A is the Action, E
is the Environment, RL is the Rule, RCA is the Rule Combining
Algorithm, C is the Condition, and E is the Effect for the policy
language scheme.

Regular expressions (2) and (4) are used for composing AC rules
by the basic AC elements: subjects, resources, actions and
environmental variables. Regular expressions (1) and (3) are for
associating (2) and (4) in two different levels. There is no
grammar for the expression of ARs in these four regular
expressions unless specified by enumerating every relation
between attributes. Additionally, we can let the Policy language
allow functions to be implemented to handle ARs in PEP or an
extended function. And those two methods are ad-hoc efforts
without formal and structural definition in the scheme. In
comparison, we will introduce an AC mechanism that provides a
well-defined framework for the specification of attribute relations
in Section III.

We demonstrate that GVMAPA has sufficiency of the elements in
the language scheme for the purpose of explaining the ARs by the
basic AC elements (i.e., subject, action, and object).

A. Specification of HRBAC Policies

BLPB policies require assigning classes (ranks) for VM attributes
to subjects and objects. We also adopt from [7] the Formal
definitions Rs = {…(Sai, Saj)…..} and Ro ={…(Oai, Oaj)…},
where Rs is a set of ARs for subject classes: for instance, Sai is
the “Top Secret” class and Saj is the “Secret” class. Rs defines the
“no read up” property of BLPB. In the same manner, Oai and Oaj
define the object classes and property. Instead of classes, HRBAC
model uses Sai and Saj to define the hierarchical relation of
privilege inheritance from Role Saj to Role Sai; for example, Role
“Professor” inherits all Role attributes of “Student” privileges in a
grading system.
To specify and enforce these relations for our GVMAPA language,

AC policy authors need to specify all the possibilities including
direct and indirect relations between the classes of VM attributes.
In the worst case, it requires O(n2) number of (2) type of
statements to describe the relations for n number of classes of
attributes in the policy. Further, there is no clear semantic support
for checking the correctness (e.g. cyclic assignment) of the
specifications.

B. Specification of GVAMAPA Separation of Duty Policies (SOD)

When required to enforce SOD polices to prevent conflicts of
interest or to control business processes, the access state of the AC
system is dynamically dictated by some system variables. For
example, a SOD policy constrains a subject’s privileges (action
and object pairs) not to exceed a predefined number, so that no
subject should be assigned more than k privileges. Equally under
this policy guarantees that no less than k number of subjects can
perform all of a set of privileges (i.e., requires at least k number of
subjects to perform all of them).
GVMAPA also seeks to enforce and maintain counters for
monitoring the number of privileges consumed by each subject
currently in the system.
In this context, the obligation and environment elements are used
to update and retrieve (read in) the external counters, respectively.
In order to establish this however, we argue the need for a VM
level of assurance (VM LOA) effecting attributes within a
hierarchical structure (VMLOA-AHS) that can accommodate
multiple attributes and categorize them into different VM groups
along with their relationships. These abstractions demonstrate a
composite effect by mapping the multiple attributes into a generic
value.
The approach here is to establish a link attribute access control
method which is risk averse. VM attribute properties are dynamic
and hence we need to design and develop an adaptive
authentication solution with different authentication methods and
varying levels of attribute assurances. We consider a hierarchical
based VMLOA-AHS policy combination algorithm that reflects
these concerns. In the interest of space we’ll discuss this
algorithm as a part of our next paper.
The regular expressions (4) are needed for referencing the
environment variables (e.g., external counters) and statements in
(3) are used to store updated variables. However, the challenge is
to accurately maintain the constraint variables (the number k in
our examples), because a subject’s access request can be granted
from more than one type (4) statement. And (4) may be
encompassed in (1) (2) or (3) statement, which provides no syntax
for maintaining the ARs between (4) s. For example, a subject
may be granted access both from Role X and Role Y to an object,
and there is no way to specify the fact that X inherits Y, therefore,
the privilege k for this subject is counted twice (which is
supposed to be once) from both X and Y attributes in the same
access session

3. ATTRIBUTE POLICY MACHINE
In pursuit of standardized access control mechanism for the
virtual cloud environment , separation of access control policies
from mechanisms which allow enforcement of multiple attribute
policies within a single VM is critical for rule based policy audits
for these abstract domains. Additionally considerations for
certificate authorities through “Kerberos cloud provisions” should be
integrated as apart of the policy audit. The GVMAPA architecture
is composed of the Policy Server (PS) for PDP and PEP.

PS includes both processes and a database as components, and the
General Policy Attribute Management System. The PS receives
subject requests and performs the authorization process by
referencing information from the PS database; it then generates a
boolean value (grant or deny) as a result. The General Policy
Attribute Management System is the interface for GVMAPA
administrators to configure and compose policies and to manage
the PS database. GVMAPA categorizes subjects (users), objects
(resources), and their attributes into policy classes, and
appropriately enforces subsets of the policies in response to a
subject’s access request.
The following fundamental data sets for the GVMAPA
processing are stored in the PS database:

S: The set of GVMAPA subjects (users) under the GVMAPA’s
control
SA: The set of subject attributes of S
OP: The set of operations (access rights) permitted by the
GVMAPA.
O: The set of objects under the GVMAPA’s control
OA: The set of object attributes of O
PC: The set of policy classes the GVMAPA is implementing

GVMAPA allows inheritance relations among subject attributes,
and object attributes such that an element inherits the privileges
from the elements that it is inherited from. The inheritance
relation must not have cycles to be legitimate. A set of elements
in an inheritance relation from one function to another function
can be formally described by the union transitive closure of the

two functions: y ∈a(x)b(y) denoted by the symbol “x→ab”.
For example, all inherited subject attributes SAs of subjects can
be denoted by s→ssasasa, and all inherited object attributes OAo
of an object o is o→ooaoaoa.

The atomic authorization process of GVMAPA is based on the
above model and notation; the following formal definitions
describe the PS authorization process:

For sS, opOP, oO, pcPC,
Grant_instance_of_policy(s,op,o,pc) = True saSA and
oaOA, such that

1) sa(s→ssa sasa), 2) oa(o→ooa oaoa), 3) sa→op oa, 4)
pc sa→sapcpcpc, and

5) pcoa→oapccpcpc.

GVMAPA only requires mapping the relations between elements to
decide the permission of a subject’s request. Through this
mechanism, GVMAPA provides syntactic and semantic support of
the AR specification.

4. ATTRIBUTE RELATION MODEL
This section outlines how GVMAPA specifies the HRBAC
policies and Separation of duty (SOD) constraints by the AR
assignments from the PS database and relation mapping functions.
Subsection A outlines the implementation of a simple VM BLBP
Model, and Subsection B shows the VM specification of SOD
constraints as illustrated in Section II.

A. Specification of HRBAC Policies

GVMAPA can emulate its subject and object ARs. The subject
security classes (labels) can be represented in GVMAPA’s subject

attributes. Further, the objects security classes (labels) can be
represented in GVMAPA’s object attributes and the subject
attributes are linked to the object attributes through operations.
For example, to implement the Bell-La Padula model, GVMAPA
may construct two sets of relations for each of the subject
attributes and object attributes.

The attribute with lower-case r in the attribute label of subject
attribute and object attribute is for the read privileges, which are
for the basic confidential rule. The attributes with lower-case w
in the attribute label are for the star property of Bell- La Padula
rules.

TS is subject/object attribute label for “Top Secret”
subject/object class, S is for “Secret” class, and C is for
“Confidential” class. W is for write privilege, R is for read
privilege for each class (for example, TSR or CW).

Each subject/object belonging to a class is assigned to both labels
w and r subject/object attribute w and r subject/object attribute
(for example, TSr and TSw). Assume that class TS dominates class
S, and class S dominates class C; Subjects with the Cw subject
attribute can write objects with the object attribute Cw, Sw and
TSw. Sw can write Sw and TSw. TSw can only write TSw. TSr can
read TSr, Sr, and Cr. Sr can read Sr and Cr.
Cr can only read Cr. Note that a subject/object must be
assigned to the same r and w group of subject/object attributes
of (TS, S or C). For example, a subject should be assigned to the
Cw subject attribute if she was assigned to the Cr subject attribute
and vice versa.
Similar to BLBP models, the hierarchy of privilege inheritance for
HRBAC can be directly specified by the subject attributes of
GVMAPA, such that if subject attribute x dominates subject
attribute y, then subject with role x inherits all the access privilege
of subjects with role y. As the AR need only be assigned to
directly related attributes, it only requires O(n) relation
assignments if there are n classes for BLPA, or role inheritance
relations for HRBAC. Thus the complexity is many times more
efficient compared to assignment statements.

Note that in this paper, we are merely specifying the AR required
AC models and constraints. The process complexity (efficiency)
for the enforcement of these VM adopted attribute models and
constraints are still the subject of ongoing work.

B. Specification of Separation of Duty (SOD) Policies
To enforce SOD, it is necessary to maintain all subject/object
attribute relations for any subject or object if multiple attribute
assignments are allowed. Hence, in addition to the basic relation
mapping functions, to retrieve current mappings of ARs in the
system, the function sa_opoa(sa) returns all (op, oa) pairs mapped to
the sa.

For example, a SOD constraint specifies that no subject should be
assigned to more than k VM privileges of a given set. Note that when
k =1, this policy is a Privilege to Privilege Conflicts Policy (PPC),
i.e. a set of privileges (OP OA) should not be assigned to the same
subject. GVMAPA implements this policy by calculating the number
of subject attributes the requesting subject is dominating or
inheriting associated with the constrained privileges and the number
cannot exceed k.

These SOD constraints seek to eliminate duplicate VM privileges
from the PS. Without these considerations, the complexity in
specification is non trivial.

5. RELATED WORK
We like the authors in [7] [9] adopt NIST guidelines for a
proposed Flexible Access Control Model (FACM), which provides
user-friendly notations and presentation of ARs and constraints.
However, the main usage of the graph representation is to help in
the specification, design, rather than as a pure computational
model, unlike GVMAPA, which provides computational functions
in the PS server, and allows policy authors to specify AC rules by
directly mapping ARs into rules semantic [10] proposed a Logical
Framework for Reasoning about Access Control Models (ACM)
based on the C-Datalog program, which provide a precise
mathematical foundation for reasoning about ARs. However, in
addition to its logical programs are not being intuitive to most
users, ACMP does not provide views of access instance and
relations between attributes, unlike GVMAPA, which is intent to
allow administrators to check/filter the relations at the point of
view of any selected access element. This capability otherwise
requires tracing through AC rules, and it is hard to achieve with the
increased number of entries in the Access control models program

6. CONCLUSION AND FUTURE WORK
The flexibility and expressiveness of an attribute based
specification is intent on making virtual machine policy languages
suitable AC mechanisms for these new compute cloud networks.
We recognize that our work is still in its infancy because,
GVMAPA is not an implementation language, and it is free from
the syntactic and semantic complexity of such. When describing
hierarchical relations between attributes or policies, GVMAPA
only requires adding links between them, therefore, avoiding the
time delays due to the sequence of overhead algorithms. In
supporting the enforcement of SOD policy constraint rules,
GVMAPA provides an infrastructure that allows the efficient
specification of rules to collect the attributes for the VM policy.
 Bearing in mind that the VM is merely a logical document for
which we can keep logs on our physical disk. This feature is
especially important when adding and deleting rules in the AC
policies. Subsequent work focuses on using attribute policies
highlighted in this paper to design synchronized virtual disk logs
required by GVMAPA to establish forensic attribute consistency
for all VM identities within the system environment.

7. REFERENCES
[1] Bell D.E. and Lapadula L. J., “Secure Computer Systems

Mathematical Foundations and Model,” M74-244, MITRE
Corp., Bedford, Mass., 1973 (also available as DTIC AS-
77153

[2] Biba K. J., “Integrity Considerations for Secure Computer
Systems,” ESD-TR-76-372, USAF Electronic Systems
Division (also MTR3153, MITRE Corp.), Bedford,
Mass.,1977 .

[3] NCSC, “Trusted Computer System Evaluation Criteria,”
National Computer Security Center, 1985.

[4] Ferraiolo et al, “Role-Based Access Control (RBAC):
Features and Motivations,” Proc. of the 11th Annual
Conference on Computer Security Applications, Calif, pp
241-248, 1995.

[5] Jajodia et al, “A logical language for expressing
authorizations,” Proc. IEEE Symp. On Research in Security
and Privacy, Oakland, Calif, pp 31- 42, May 1997

[6] OASIS, “Extensible Access Control Markup
Language(XACML), TC”,
www.oasisopen.org/committees/tc_home.php/wg_abbrev=xa
cml

[7] Hu et al, “The Policy Machine For Security Policy
Management,” Proc. ICCS Conference, San Francisco, 2001

[8] Ferraiolo et al, “Composing and Combining Policies under
the PolicyMachine,” ACM SACMAT, 2005.

[9] Coetzee M. and Eloff J. H. P., “Virtual Enterprise Access
Control Requirements,” Proc. of SAICSIT, pp. 285-294,
2003.

[10] Bertino et al, “A Logical Framework for Reasoning about
Access Control Models,” ACM Transactions on Information
and System Security, Vol. 6, No. 1, pp 71–127, February,
2003

[11] Grandison et.al “ Fomal Definition on Models of a Cloud
Computing” “ IEEE Services , July 2010.

[12] Thorpe “ Contextual Models of trust for Digital Identities
using UML 2.0”, IEEE Information Assurance and Security ,
August 2010.

[13] Ray et.al “ Global Virtual Machine Attribute Policy
Auditor”, CSU Discussion Forum, Sept. 2010.

