
Enabling Scaleable, Efficient, Non-Visual Web Browsing
Services

Ashish Verma
IBM India Research Lab

4 Block C, Institutional Area, Vasant
Kunj, New Delhi, 110070. India

vashish@in.ibm.com

Tyrone Grandison

IBM Almaden Research Center
650 Harry Road, San Jose,

California 95120, USA

tyroneg@us.ibm.com

Himanshu Chauhan

IBM India Research Lab
4 Block C, Institutional Area, Vasant

Kunj, New Delhi, 110070. India

himchauh@in.ibm.com

ABSTRACT

Over the last few decades, the discipline of Web Accessibility has

been focused on building more efficient and more effective speech

generators for Web Browsers. The visual browser interface is

central to the current paradigm. However, in many cases, visual

interaction is not required or desired, e.g. it is not relevant for

blind people. More generally, when the input and output points

are WAV files, SMS messages or natural queries, it becomes very

clear that going through the visual user interface is overkill. In

this paper we introduce a solution to this problem - a scalable,

efficient, non-visual web browser that works with a Web whose

central assumption is that visual interaction is an integral part of

the user experience.

1. INTRODUCTION
While all of the efforts in the contemporary Accessibility research

[1-6] are quite significant in helping the traditional Web browser

users access information online faster and more efficiently, they

still require the users to be familiar with the Web browsing

concept and have access to a computer and so are not well suited

for the part of the world population where non-computer based

technologies need to be applied, i.e. the developing world.

Our solution, named CORBAC (CORe Browser for

ACcessibility), is required because current techniques are 1) based

on incremental benefits for impaired people (whether visually or

otherwise impaired), 2) not amenable to scaling to a large number

of non-computer users (e.g. a large mobile phone network), and 3)

still based on a visual browser which has no relevance to

blind/poor/low literate people.

2. MOTIVATION
The main motivation behind CORBAC is that the

information on the Web should be accessible in a pervasive

manner to a much larger population who don't and or can't user

computers and have access to simple devices, such as phones.

CORBAC represents a paradigm shift for Accessibility research -

as it removes the (currently) key assumption that the screen is

critical in meeting the needs of the disabled or impaired user.

3. SYSTEM
CORBAC consists of two main components: a core browser

service and a simulator. The core browser engine handles web

languages, e.g. HTML, PHP, Flash, etc and detects & blocks

visual-only material, such as images, videos and animations. The

simulator mimics visual interactions, e.g. menu selections, radio

button clicks, form field - filling, etc., and is designed to be

extensible to handle current and future dynamic Web

technologies, e.g. JS, Perl, Ruby on Rails, etc.

Figure 1 demonstrates the typical operation of our system. A

disabled/impaired user uses an Accessibility Interaction Point

(AIP) to send a request to an Accessibility Action Point (AAP),

which transforms the request into a standard canonical form.

After transformation, the request is sent to the CORBAC browser,

which gathers the accessibility-friendly version of the requested

web-page(s) and returns the result to the AAP, which then

performs another transformation into the destination language and

passes back to the AIP for consumption by the user.

Figure 1. Insert caption to place caption below figure.

Each AIP handles a particular modality (or set of modalities), e.g.

one AIP may be dedicated to receiving voice commands from a

mobile phone user, whereas another AIP may be developed to

accept and send SMS messages. The AAP functions as a generic

translator, e.g. from speech to VXML, from text message to xml,

from ?xml to some destination protocol.

Figure 2 highlights the inner workings of the CORBAC Browser.

When a request enters the CORBAC browser, it is sent to

Simulator, which makes a call to the Data Fetcher (DF) to retrieve

the non-visual elements of the page(s). If there are any

dynamic/active components in the Web page(s) returned, then the

Simulator uses the Active Component Framework (ACF) to figure

out how to interpret that particular content. This translates to

instantiating the actions, given the information provided by the

ACF. Each of these instantiations may lead to more requests to

the DF. When all the instantiations have been made, the complete

web page is sent to the CORBAC interface, which sends the

information back to AAP (in the standard canonical form, referred

to as ?xml in Figure 2).

Copyright is held by the author/owner(s).

Web

CORBAC AAP
Internet

AIP5

AIPn

…

…
request

request

response

response

AIP1

Figure 2. Inside the CORBAC Box.

The Active Models component contains a directory of various

objects and the actions that can be performed on them, on a per

language basis. Thus, if a new dynamic language starts being used

by Web Browser, this system needs only to update the Active

Models components with new definitions for that language. In a

nutshell, the Active Models component is a modifiable library,

which means that models can be updated, new models added and

old models deleted as active technology becomes obsolete. This

ensures that the system can leverage new and emerging

active/dynamic web technologies.

Figure 3. Active Component Framework Details.

Figure 3 shows the details of the ACF and its components.

Communication between the Simulator and the Active

Component Framework are facilitated by an interface

implementation called ACF Communication Layer. This is a

single point of communication with ACF and hence all requests

for execution of client side scripts/dynamic content modifications

which come to ACF are channeled though this communication

layer. It also interfaces with the Active Models components, in

order to determine how to handle particular objects and actions in

the language in use. Result details and actions (which need to be

taken by Simulator after script execution) and also communicated

to the Simulator are also provided by this layer.

In an implementation scenario, a notification about execution of

an event is forwarded to ACF (communication layer); for

example: a user selecting an option from a listbox. Upon receiving

the notification, ACF Communication layer interprets it in the

context of the language (using the Active Models component) and

forwards it to Event Identifier module, which identifies specific

details, like id and text of option selected in the listbox, of the

event and forwards them to Event Handler module. The Event

Handler module interacts with the Script Identifier module to

identify the script which should be executed for the event. Once

Script Identifier returns the script(s) that should be executed, for

example a JavaScript function making a hidden text-box visible,

the Event Handler requests the Script Execution Engine to

execute that script/function. The Script Execution Engine, as the

name suggests, is an engine to execute client side scripts. After the

execution of the script, the engine delegates the execution result

to the Script Result Handler module. This module handles the

result from the script execution and takes appropriate action, such

as making the hidden text box visible. However, the result handler

has different components to handle different results: The Content

Modifier to modify the page content, The Alert Handler to handle

alert notifications etc. In case there is such a need to handle the

result, the corresponding handler is called to take the action. After

which the Result Notifier component, of the Script Result Handler

module, sends a notification to ACF Communication Layer about

the result, which is further propagated to the Simulator, so that the

Simulator can take appropriate action based on the result, such as

registering that a new text box is visible on the page now.

4. BENEFITS
The advantages of CORBAC are that 1) it enables the information

access through many interfaces (not only computers), 2) it

improves the speed of web browsing for the disabled user, 3) it

reduces the resources consumed when surfing the Web, and 4) it

scales beyond current techniques.

5. REFERENCES
[1] Huixiang Gu, Jianming Li, Ben Walter and Eric Chang, "Spoken Query for Web Search and

Navigation", Proc. of Internaltional WWW Conference, HongKong 2001.

[2] Dong Lin, Lin Bigin, Yuan Bao-Zong, "Using Chinese Spoken-Language Access to the

WWW", Proc. of International Conference on WCCC-ICSP, Volume 2, pages:1321-1324,

2000.

[3] J. Mahmud, Y. Borodin and I.V. Ramakrishnan, “CSurf: A Context-Driven Non-Visual

Web-Browser”, International World Wide Web Conference WWW'2007, 8-12 May 2007,

Banff, Canada.

[4] J. P. Bigham, T. A. Lau and J. W. Nichols, "TrailBlazer: Enabling Blind Users to Blaze

Trails Through the Web", submittted to International Conference on Intelligent User

Interfaces, Florida, 2009.

[5] Arun Kumar, Nitendra Rajput, Dipanjan Chakraborty, Sheetal K. Agarwal and Amit Anil

Nanavati, "WWTW: The WorldWide Telecom Web", NSDR 2007 (SIGCOMM workshop),

Kyoto, Japan 2007.

[6] Sheetal Agarwal, Arun Kumar, Amit Anil Nanavati, Nitendra Rajput, "The WorldWide

Telecom Web Browser", Proc. of International WWW Conference, Beijing, China, 2008

response

(in ?xml)

request

Data

Fetcher

Simulator

Active
Component
Framework

Get data
from web
page(s)

CORBAC Interface

JSP

 Perl

Ruby

….

….

Event
Notification

ACF Communication Layer

Script
Identifier

Event
Handler

Alert Handler Content

Event Identifier

Script Result

Script Execution Engine

Result
Notifier

Active Component

Execution Layer

Result
Notification

Active
Model

