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Abstract — Data is the fuel, the glue and the product of online 
collaboration. Big Data is the driving force behind collaborative 
computing and is enabling and facilitating the next wave of  
innovation. Unfortunately, privacy is one of the core weaknesses 
of the entire ecosystem. The prevailing wisdom is that sensitive 
data can be protected in Big Data sets. In this paper, we 
decompose the problem space and mathematically discuss the 
implications for privacy when one connects the many, large data 
sets that comprise a Big Data collection. 
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I. INTRODUCTION 
The term Big Data has gone through peaks and valleys of 

interest over the last few years. A cursory check of Google 
Trends on the search interest in the term shows that there has 
been an overall increase in activity since October 2011, with 
maximum interest being reached around February 2016 
(Figure 1). 

 
Fig. 1: Search Popularity of Big Data.  

Source: Google Trends (Oct 6th, 2016). 

However, the term Big Data has been floating around in 
computer science research circles since around the year 2000. 
The META Group (now Gartner) published a research report 
in 2001 [1], where they described data growth challenges and 
opportunities as being three-dimensional, i.e. increasing 

volume (amount of data), velocity (speed of data in and out), 
and variety (range of data types and sources).  

Every year since 1995, Gartner has produced an annual 
deliverable called the “hype cycle”, which gives an idea of the 
technologies that survive the market hype and have a potential 
to become a part of daily life.  

Formally, the Gartner Hype Cycle provides a graphic 
representation of the maturity and adoption of technologies 
and applications, and how they are potentially relevant to 
solving real business problems and exploiting new 
opportunities. This graph has five regions: Innovation Trigger 
(i.e. when potential technology breakthrough kicks off), Peak 
of Inflated Expectations (i.e. success stories through early 
publicity), Trough of Disillusionment (i.e. waning interest), 
Slope of Enlightenment (i.e. when 2nd & 3rd generation 
products appear) and Plateau of Productivity (i.e. when 
mainstream adoption starts). 

 

 
Fig. 2: Gartner Hype Cycle 2014. 

In the 2014 Gartner Hype Cycle (Figure 2), Big Data is 
shown to be entering the Trough of Disillusionment, i.e. after 
a lot of discussion about the phenomenon and its promise, a 
general reduction in interest about Big Data overtakes the 
marketplace as experiments and implementations fail to 
deliver and or under-deliver. In this phase, investments 
continue only if the surviving players improve their products 
to the satisfaction of early adopters. 



However, in the 2015 Gartner Hype Cycle (Figure 3), Big 
Data is completely gone. Given, the sustained high search 
activity (Figure 1), this may mean that the most talked about 
Big Data related technologies are now into practice and no 
more a hype. 

 
Fig. 3: Gartner Hype Cycle 2015. 

This conclusion confirms that since the initial exploration 
of Big Data opportunities, the term and its associated 
technologies have been embraced, and are most likely 
embedded in the industry.  

This adoption has progressed with little regard for the 
privacy implementations that must be included in Big Data 
technology stacks; as the benefits of Big Data far outweigh the 
potential commercial harm for businesses. This is the reason 
why the authors decided to explore this topic. 

We first present the basics on Big Data (section 2). Then, 
in section 3, we outline the process that privacy professionals 
take when protecting data sets. In section 4, we model both the 
process of creating big data, i.e. information integration, and 
the process of protecting the privacy of the subjects specified 
in the Big Data sets; making observations about the model 
along the way. Then we discuss the impact of those 
observations in section 5. Finally, we present related work 
(section 6) and conclude (Section 7).        

II. BIG DATA 

Gartner, and most computing practitioners and researchers, 
still use the “3Vs” model as the basis for explaining the 
concept of Big Data [2]. In 2012, Gartner updated its 
definition, which now states that: “Big Data are high volume, 
high velocity, and/or high variety information assets that 
require new forms of processing to enable enhanced decision 
making, insight discovery and process optimization” [3].  

Though, there is no consensus on a definition of the 
concept, the above characterization is the closest that the field 
has come to one and will be the foundation for this paper.  

Over the last few years, the additional dimensions of value 
and veracity have been embraced, by many industry players, 
as being important additional characteristics of Big Data. So, 
currently, the “5Vs” are viewed as critical differentiators of 
Big Data versus regular data.  

Formally, volume refers to the fact that organizations are 
collecting petabytes, exabytes, zettabytes and even yottabytes 
worth of data from multiple sources, e.g. sensors, social 
media, smart digital devices, etc. Velocity refers to the fact 
that these large volumes of data must be processed and 
analyzed as they stream into and out of an organization, i.e. in 
real-time, to extract value from it. Variety refers to the fact 
that this data is in various forms of organization, i.e. 
structured, semi-structured or unstructured, and in a number of 
modalities, i.e. free text, video, audio, sensor data, logs, etc. 
Value refers to the fact that this data is used to generate 
revenue through insight and influence spending, cost-saving 
strategies and optimizations. Veracity refers to the fact that the 
data (and data sources) must be trustworthy, as they impact 
critical choices. 

We purport that in its simplest case, Big Data is the result 
of the convergence, i.e. integration, of large amounts of 
valuable, diverse, variegated data, where the schema of each 
constituent data set is a much smaller set than the data it 
describes (to the tune of several orders of magnitude), and 
where this data must be manipulated and analyzed very 
quickly. 

It is collaboration that enables this convergence and makes 
new and exciting discoveries and innovations possible.  

III. CURRENT PRIVACY PRESERVATION PRACTICES 

It is standard practice for privacy researchers and 
professionals who are tasked with analyzing data and 
transforming the sensitive portions of it (whether by 
anonymization, pseudonymization or other mechanisms) to 
create privacy-preserving versions of data; by partitioning the 
attributes of the data into three main categories: 1) sensitive 
data - can be used to identify an individual or data record, 2) 
quasi-identifiers - together with auxiliary information can be 
used to identify individuals and or records, and 3) benign data 
- is thought of as non-identifying or non-sensitive.  

Practitioners tend to use government or industry guidelines 
in the data attribute classification process, e.g. the de-
identification guidelines provided by the US Department of 
Health and Human Services (HHS) in the Health Insurance 
Portability and Accountability Act (HIPAA) [4] and the 
anonymization guidelines articulated in the code of practice 
document produced by the UK’s Information Commissioner’s 
Office (ICO), in line with the European Union (EU) Data 
Protection Directive [5]. Practitioners often do an initial 
analysis of the data, in the context of publicly available 
information, to determine the attributes that can be used to re-
identify records, i.e. quasi-identifiers. 

After this bucketing is performed, either the same or 
multiple transformative algorithms are applied to sensitive 
data and quasi-identifiers in the corpus to transform the data 
set into a safer, i.e. more privacy-preserving, form.  

For example, let’s examine a simple, non-normalized 
database table for contacting a services company, which we 
will refer to as contact_us. 

The attributes of the contact_us table are: 



1. Name: this is the name of the email’s sender 
2. Email: this is the email address of the sender 
3. City: this is the city the sender lives in 
4. State: this is the state the sender lives in  
5. Zip: this is the sender’s zipcode 
6. ID: this is the unique identifier for the message 
7. Loc: this is the folder location where the message 

and its attachments are stored 
8. Subject: this is the subject of the message 
9. Message: this is the message contents 
10. Date: this is the date that the message was sent. 

In the initial step, a privacy professional, leverages 
guidelines and an analysis of the data values to place attributes 
into one of the three buckets: 1) sensitive (S), 2) quasi-
identifier (Q), and 3) the rest that are not sensitive and not 
quasi-identifiers (R).  

For the contact_us table, a highly-probable and possible 
partitioning is: 

S={Name, Email, ID} 
Q={City, State, Zip, Date} 
R={Loc, Subject, Message} 
In the second phase, the practitioner determines the 

privacy-preservation algorithms to be used to transform the 
sets S and Q.  

For this example, let’s assume that sensitive data will be 
encrypted using the AES algorithm, using a key of arbitrary 
length – say 256 bits, and that quasi-identifiers will be hashed 
with the SHA-3 function.  

After the functions have been applied, the privacy of the 
resulting data set is assumed to be higher than the privacy of 
its prior state. Stated another way, the privacy risk of the new 
state is lower than the privacy risk of the old state. 

The underlying discussion on the correctness of assigning 
a particular attribute to a given category, the dynamic nature 
of an attribute over time and in the context of emerging data 
and thus, the fluidity of data and metadata are all topics that 
are out of the scope for this paper.  

Also not included in the purview of this paper are the 
issues surrounding the correctness and utility of the algorithms 
employed to improve privacy and their appropriateness in 
being applied to various types of data and in particular 
contexts. 

We take as a given that the privacy professionals correctly 
and consistently use guidelines to classify columns of data 
into various distinct classes and then appropriately apply 
algorithms to particular segments in order to protect sensitive 
items.    

For our model – detailed in the next section - we assume 
the current state of affairs in the industry. We also choose the 
volume dimension of Big Data as our starting point; as it 
represents the simplest use case. 

IV. THE MODEL 

Assume a data set, 𝑑", which is vertically segmented into a 
set of three types of data attributes or descriptors: 𝑠" – the set 

of sensitive attributes, 𝑞" – the set of quasi-identifiers, 𝑟" – the 
set of non-sensitive attributes that are not quasi-identifiers. 

𝑑" = {𝑠", 𝑞", 𝑟"} 

We define T as a family of privacy transformation 
functions, where any member function can be applied to d1  to 
transform it into its privacy-preserving form, i.e.  

{𝑡", … , 𝑡,} 	 ∈ 𝑇│𝑛 ∈ ℕ 

𝑑"2 = 𝑇 𝑑" = {𝑡3 𝑠" , 𝑡4 𝑞" , 𝑟"}│𝑡3, 𝑡4 ∈ 𝑇 

We assume that different transformations may be applied 
to both sensitive attributes and or quasi-identifiers. The 
information that is deemed innocuous is presumed to not 
require transformation.  

We also define PR1 as a Privacy Risk function, a 
probability distribution function, which quantifies the risk of a 
data set, i.e.  

𝑃𝑅" 𝑑"2 = 	𝜔│𝜔 ∈ ℝ, 0 ≤ 𝜔 ≤ 1 

𝑃𝑅" 𝑑<2 = 	𝜔│𝜔 ∈ ℝ, 0 ≤ 𝜔 ≤ 1		𝑎𝑛𝑑	𝑞 ∈ ℕ 

If 𝑃𝑅" equals to 1, then it assumed that the data set is not 
private. The implication here is two-fold. Firstly, that 
individual record owners can be easily identified in the data 
set. Secondly, that individuals are completely exposed to a 
breach of some kind.  

If 𝑃𝑅" equals to 0, then it is assumed that the data set is 
completely private. This means that the identity of each person 
in the data set is completely protected and that even in the 
event of a breach incident the individual has little to be 
concerned about.  

Assume that there is a universal set of privacy risk score 
functions, PR. For every privacy transformation function in 
this set, there is an associated privacy risk function.  

{𝑃𝑅", … , 𝑃𝑅,} 	 ∈ 𝑃𝑅│𝑛 ∈ ℕ 

( ∀𝑡3 ∈ 𝑇 → ∃𝑃𝑅3 ∈ 𝑃𝑅 ) │𝑎 ∈ ℕ 
An example of this co-existence of privacy transformation 

and risk function can be observed with the k-anonymity 
algorithm [6], i.e. 

∃𝑡3 = (𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦) such that 𝑃𝑅3 𝑑42 = "
I
│𝑎, 𝑏, 𝑘 ∈

ℕ 

For typical information integration scenarios, there is at 
least a second data set, 𝑑K, which is also vertically segmented 
and where the segments may or may not have common 
attributes as the segments in d1. 

𝑑K = {𝑠K, 𝑞K, 𝑟K} such that  

((𝑠∩ = (𝑠K ∩ 𝑠"))∧(𝑞∩ = (𝑞K ∩ 𝑞"))∧(𝑟∩ = (𝑟K ∩ 𝑟")))
→ (( 𝑠∩ ≥ 0)∧( 𝑞∩ ≥ 0)∧( 𝑟∩ ≥ 0)) 

For simplicity, we define S as the global set of all sensitive 
attributes, Q as the set of all quasi-identifiers and R as the set 
of all non-sensitive, non-quasi-identifiers. 



𝑆 = 𝑠", … , 𝑠, , 𝑄 = 𝑞", … , 𝑞, , 𝑅 = 𝑟", … , 𝑟, 	│𝑛 ∈ ℕ 
Where 𝑠"  is the set of sensitive attributes from the first 

data set, sn is the set of sensitive attributes from the nth data 
set, 𝑞" is the set of quasi-identifying attributes from the first 
data set, 𝑞, is the set of quasi-identifying attributes from the 
nth data set, etc.  

Please note that we assume that the cardinality of each set 
may vary. For our notation, this would mean that some of the 
descriptors may contain NULL values. 

We define the data integration operator function, ⊕, which 
combines n data sets, based on a join criteria, j, which is a set 
of attributes common to all the data sets being integrated. 

𝐷 =⊕S 𝑑", … , 𝑑, = {𝑠", … , 𝑠,, 𝑞", … , 𝑞,, 𝑟", … , 𝑟,}│ 

((𝑗 ⊆ 𝑑")∧ …∧ 𝑗 ⊆ 𝑑, ) 
The integrator function mimics the natural join operation 

in standard relational algebra. However, we make it an 
abstract function that can be used on well-described data, 
whether they are stored in relations or not.  

The set D is the composite data set of all the constituent 
data sets that we integrated, i.e. D is a Big Data set. We refer 
to each of the data set parameters passed to the integrator 
function as operands or operand sets. 

Given n privacy transformation functions, 𝑡" … 𝑡, , where 
each transformation is different and applied to a corresponding 
data set, we assert that applying the integrator function on the 
privacy-preserving equivalents of the operand sets will mean 
that the join operators must be a subset of the non-sensitive 
non-quasi-identifiers. 

𝐷2 =	⊕𝑗 𝑑1
𝑃, … , 𝑑𝑛

𝑃 =
{𝑡1(𝑠1), … , 𝑡𝑛(𝑠𝑛), 𝑡𝑐(𝑞1), … , 𝑡𝑧(𝑞𝑛), 𝑟1, … , 𝑟𝑛} │ 

((∀𝑡3, 𝑡4 ∈ 𝑇)∧(𝑡3 ≠ 𝑡4)) → ((𝑗 ⊆ 𝑟")∧ …∧ 𝑗 ⊆ 𝑟, )				 

𝑎, 𝑏, 𝑐, 𝑛, 𝑧	 ∈ ℕ  

If some or all of the transformation functions are the same, 
then the join set may also be a subset of the sensitive data and 
quasi-identifiers. 

𝐷2 =	⊕𝑗 𝑑1
𝑃, … , 𝑑𝑛

𝑃  

= {𝑡"(𝑠"), … , 𝑡,(𝑠,), 𝑡Y(𝑞"), … , 𝑡Z(𝑞,), 𝑟", … , 𝑟,} │ 

((∀𝑡3, 𝑡4 ∈ 𝑇)∧(𝑡3 = 𝑡4)) 

((𝑗 ⊆ 𝑠")∧ …∧ 𝑗 ⊆ 𝑠, )∨((𝑗 ⊆ 𝑞")∧ …∧ 𝑗 ⊆ 𝑞, )∨((𝑗 ⊆
𝑟")∧ …∧ 𝑗 ⊆ 𝑟, )			𝑎, 𝑏, 𝑐, 𝑛, 𝑧	 ∈ ℕ  

The privacy risk of the Big Data set is the privacy risk of 
the combined constituent data sets. 

𝑃𝑅 𝐷2 = 	𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,2 𝑤ℎ𝑒𝑟𝑒	𝑛 ∈ ℕ	 

Intuitively, the privacy risk of a Big Data set, which is 
made up of n smaller data sets, is the privacy risk of knowing 
an arbitrary data attribute(s) given all the prior attributes. 

Lemma: 

PR is monotonically increasing 

   i.e. 𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,2 ≥ 𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,_"2  

For any arbitrary sequence of datasets, 	𝑑", … , 𝑑, , and ⊕S 
integrator operator function on join criteria 𝑗, ∃𝑘 ⊂ 𝑗 where k 
is a subset of the join criteria j that excludes 𝑑a│∀𝑚 > 𝑛 −
1	𝑤ℎ𝑒𝑟𝑒		𝑚, 𝑛 ∈ ℕ dataset i.e. ((𝑘 ⊆ 𝑑")∧ …∧ 𝑘 ⊆ 𝑑,_" ). 

⇒	⊕S 𝑑"2, … , 𝑑,_"2 ≡	⊕I 𝑑"2, … , 𝑑,_"2  

≡	⊕I 𝑑"2, … , 𝑑,2 ⊆	⊕S 𝑑"2, … , 𝑑,2  

𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,_"2 = 𝑃𝑅 ⊕I 𝑑"2, … , 𝑑,_"2  

= 	𝑃𝑅 ⊕I 𝑑"2, … , 𝑑,2 ≤ 𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,2 	 

𝑓𝑜𝑟	𝑎𝑛𝑦	𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦	𝑃𝑟𝑖𝑣𝑎𝑐𝑦	𝑅𝑖𝑠𝑘	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑃𝑅. 

Thus, PR is monotonically increasing as 𝑛 ⟶ ∞. 

Theorem:  

lim
,→n

𝑃𝑅(𝐷2) = lim
,→n

𝑃𝑅(⊕S 𝑑"2, … , 𝑑,2 ) ≈ 1							(1) 

Proof: 

PR is a monotonic increasing function that is bounded above 
by 1. By monotone convergence, lim

,→n
𝑃𝑅(𝐷2) = 𝑠𝑢𝑝 Ω │

∀ω ∈ Ω = 1 since PR is a probability distribution function. 
 

lim
,→n

𝑃𝑅 𝐷2  

= lim
,→n

𝑃𝑅 ⊕S 𝑑"2, … , 𝑑,2  

= lim
,→n

𝑃𝑅 𝑑,2│ 𝑑"2, … , 𝑑,_"2  

= lim
,→n

𝑃𝑅 𝑑,2⋀ 𝑑"
2, … , 𝑑,_"2

𝑃𝑅 𝑑"2, … , 𝑑,_"2 	 

𝑤ℎ𝑒𝑟𝑒	𝑛 ∈ ℕ 

As n tends to infinity, 𝑃𝑅 𝑑,2⋀ 𝑑"
2, … , 𝑑,_"2 	tends to 1 

and so does 𝑃𝑅(𝑑,2) . Thus,  

lim
,→n

𝑃𝑅 𝑑,2⋀ 𝑑"
2, … , 𝑑,_"2

𝑃𝑅 𝑑,2
	≈ 1 

In layman’s terms, as you integrate more data sets into an 
existing data collection, the privacy risk score of the 
cumulative data set (which is currently assumed by most 
people to be privacy-preserving) increases to the point where 
there is no privacy. 

Put even simpler, Big Data sets have a very high 
probability of not being private.  



V. DISCUSSION 

This paper is a first attempt at shining the spotlight on a 
fundamental risk inherent in Internet collaboration, i.e. the 
privacy risks associated with the data sets used and produced 
during the interaction.  

As Big Data is the typical starting point for online 
collaboration, we focused on Big Data privacy to highlight the 
validity of a basic assumption – that privacy is possible for 
Big Data sets.  

In this discussion section, we will speak to possible future 
explorations based on the current model and then to the 
general insight from our formulation. 

A. Model Implications 
Assuming that the model is an accurate enough 

approximation of current privacy practices used and the Big 
Data formation process, there are a few natural considerations. 

If one were to dive into the model, particularly equation 
(1), there is an interesting question that arises – “Is there a 
value for n at which the privacy risk becomes significant?” 
Simply put, how many data sets does it take to shift the entire 
collection from a safe to an unsafe state? This question 
assumes that such a threshold value can even be determined. 
Such a threshold may probably even be contextual and will 
vary based on the context of the data collection. 

The convergence of PR to 1 as new data sets are added 
implies that the set of attributes used to join the new and prior 
data sets moves from benign & quasi-identifying to being 
“effectively identifying”. This validates the dynamic nature of 
data attributes, but calls into question the notion that it is 
possible to do an initial classification of attributes into the 
initial three buckets that will stand the test of time, or rather 
integration. 

Even though it is the authors’ viewpoint is that any piece 
of data may, at a point in time, be situationally or contextually 
sensitive, we did not question the validity of the nature of data 
in this current paper. Instead, we worked within the confines 
of current best practice. Determining the data attributes that 
privacy professionals place into each category is definitely 
further of further examination. 

The model focuses sharply on the volume component of a 
Big Data set, i.e. the size of the data set, n. The authors viewed 
volume as the base case for Big Data collections. However, 
we foresee other models that factor in the rate of integration of 
newer data sets (velocity), the modality of the data sets 
(variety), the worth of the data set (value) and the 
trustworthiness of the data set and source (veracity). 

Let’s elevate our perspective and examine the macro-level 
observations from this exposition. 
B. General Observations 

In our model, we include the notion that there is some 
attempt to protect privacy in the data sets. We assumed that 
participants who are hosting, combining and collaborating on  
data sets are good stewards and try to take the necessary steps 
to reduce privacy risk.  

From this “best case” model, it is seen that safeguarding 
privacy when it pertains to Big Data is close to impossible, 
probabilistically.  

Imagine the cases where some of the operand data sets are 
not protected and are merged with data that is thought to be 
protected. In these scenarios, the privacy risk most likely 
increases at a faster rate towards an unsafe state.   

The model and the proof are purposefully simple. The 
intention is to provide a basic formulation to demonstrate a 
simple and intuitive result. The authors want this conclusion to 
be the starting point for a robust discussion on real solutions 
that enable Big Data privacy – ones that view all data as 
sensitive, provide cryptographically hard ways to perform 
privacy transforms and that enable the processing of that data 
in its secure state.  

VI. RELATED WORK 

This work builds on the seminal work at Gartner [1], where 
the concept of Big Data was defined and its dimensions 
articulated and explored. 

The policy and practice elements of this paper builds on 
HIPAA [4], and the EU Data Protection Directive [5]. 

The algorithms underlying k-anonymity [6], Hippocratic 
database technology [7-10] and differential privacy [11] 
provide the technical underpinnings of the model we presented.  

The current set of privacy models, e.g. Fischer-Hübner and 
Ott [12], Gilburd et. al. [13], Hermans et. al. [14], and Bohli et. 
al. [15], focus on describing the classical elements of privacy 
policies, i.e. purpose, disclosure, use, consent, etc, and on using 
access control frameworks to implement these elements in 
service of privacy protection. In contrast, this paper assumes 
that these specification and implementation models exists and 
work as defined. We focus on working at a higher level of 
abstraction; examining the effect on risk of combining these 
“private” data sets. 

Popa et. al. [16] propose a mechanism for performing 
encrypted queries on encrypted Big Data repositories. This is 
one of the approaches that naturally supports the next steps for 
this paper. 

VII. CONCLUSION 

As researchers in a field that is fundamentally changing the 
collective way of life for citizens across the globe, our 
community has the responsibility to ensure that the 
technologies that we create and provide is being built with care 
and used ethically on everyone’s behalf and for everyone’s 
benefit. 

Our current focus on collaboration masks a fundamental 
flaw at the core of our infrastructure – the privacy of the Big 
Data sets upon which these interactions are based.  

In the field today, there is general acceptance of the notion 
that Big Data privacy is possible through the application of 
simple privacy-preserving transformation algorithms. This 
assumption may not only be deceptive to the general public, 
but also holds the potential to unravel an entire industry and 
invalidate a field of study, if we do not have the will to 
critically analyze our systems, processes, and self-interest. 



In this paper, we focus on 1) describing the “as-is” state of 
the data privacy protection practice, and on 2) modelling the 
core of what is Big Data. We then layered the two worlds 
together using a probabilistic framework and took that 
framework to its obvious, natural conclusion. The end result – 
given the current model, there is no privacy when it comes to 
Big Data. 

This is the start of a critical discussion and introspection – 
one that we hope the community will engage in. 
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